【題目】已知奇函數(shù)的定義域?yàn)?/span>,其中為指數(shù)函數(shù)且過(guò)點(diǎn)

(1)求函數(shù)的解析式;

(2)判斷函數(shù)的單調(diào)性,并用函數(shù)單調(diào)性定義證明.

(3)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)在上單調(diào)遞減,見(jiàn)解析;(3)

【解析】

1為指數(shù)函數(shù)且過(guò)點(diǎn),可以利用待定系數(shù)法求出的表達(dá)式,代入到中,還有一個(gè)參數(shù),題中還有一個(gè)條件:定義域?yàn)?/span>上的奇函數(shù),又得出一個(gè)相應(yīng)的等量關(guān)系.

2)用定義法去證明函數(shù)的單調(diào)性問(wèn)題,可以“程序化”

1.取值; 2.作差(也有作商);3比較大。ㄗ鞑詈0比較,作商和1做對(duì)比);4下結(jié)論.

3)由(2)已經(jīng)判斷函數(shù)是單調(diào)的奇函數(shù),可以轉(zhuǎn)化為:這樣就能轉(zhuǎn)化為相應(yīng)不等式,進(jìn)而完成本題.

(1)設(shè),由的圖象過(guò)點(diǎn)

可得,∴,.故函數(shù)

再根據(jù)為奇函數(shù),可得,

,即.

(2)∵

設(shè),則,由于,

結(jié)合,可得,

,即,故上單調(diào)遞減.

(3)為奇函數(shù),所以

上單調(diào)遞減,所以對(duì)恒成立,

所以對(duì)對(duì)恒成立,令

所以,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)上存在滿(mǎn)足,,則稱(chēng)函數(shù)是在上的“雙中值函數(shù)”,已知函數(shù)上的“雙中值函數(shù)”,則函數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若在區(qū)間[0,1]上有最大值1和最小值-2.求a,b的值;

2)在(1)條件下,若在區(qū)間上,不等式fx 恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R.
(1)當(dāng)a=1時(shí),解不等式f(x)≥5;
(2)若存在x0滿(mǎn)足f(x0)+|x0﹣2|<3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.

(1)求證:平面AEC⊥平面PDB;
(2)當(dāng)PD=2AB,且E為PB的中點(diǎn),求二面角B﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:

(i)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形中, , , , 底面, 底面且有.

(1)求證: ;

(2)若線(xiàn)段的中點(diǎn)為,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的角平分線(xiàn)AD的延長(zhǎng)線(xiàn)交它的外接圓于點(diǎn)E.

(1)證明:△ABE∽△ADC;
(2)若△ABC的面積S= ADAE,求∠BAC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司試銷(xiāo)一種成本單價(jià)為500/件的新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià),又不高于800/件.經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).

1)由圖象,求函數(shù)的表達(dá)式;

2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷(xiāo)售總價(jià)﹣成本總價(jià))為元.試用銷(xiāo)售單價(jià)表示毛利潤(rùn),并求銷(xiāo)售單價(jià)定為多少時(shí),該公司獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷(xiāo)售量是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案