分析 (1)先求出f(log35)=5,進而根據奇函數的性質,可得f(log3$\frac{1}{5}$)=-f(log35);
(2)根據已知可得f(x)為奇函數,可得f(0)=0,當x<0時,-x>0,f(x)=-f(-x)得到x<0時,f(x)的解析式,綜合可得答案.
解答 解:(1)∵當x∈(0,+∞)時,f(x)=3x.log35>0,
∴f(log35)=5,
又∵log35=-log3$\frac{1}{5}$,
∴f(log3$\frac{1}{5}$)=-(log35)=-5;
(2)當x<0時,-x>0,
f(x)=-f(-x)=-3-x.
當x=0時,f(0)=0,
∴f(x)=$\left\{\begin{array}{l}-{3}^{-x},x<0\\ 0,x=0\\{3}^{x},x>0\end{array}\right.$.
點評 本題考查的知識點是函數奇偶性的性質,熟練掌握函數奇偶性的性質,是解答的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $±3\sqrt{5}$ | B. | $-\sqrt{5}$ | C. | $3\sqrt{5}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [1,2] | B. | $[{\frac{1}{2},1}]$ | C. | [2,8] | D. | [8,32] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com