【題目】雙曲線的一個焦點(diǎn)恰好與拋物線的焦點(diǎn)重合,且兩曲線的一個交點(diǎn)為,若,則雙曲線的方程為( 。

A. B.

C. D.

【答案】D

【解析】

求出拋物線的焦點(diǎn)坐標(biāo),可得雙曲線的焦距,得到關(guān)系式,利用拋物線的焦半徑公式求出的坐標(biāo),把點(diǎn)代入雙曲線方程,可求得的值,從而可求出雙曲線的標(biāo)準(zhǔn)方程.

∵拋物線y2=8x的焦點(diǎn)F(2,0),

∴由題意知雙曲線1(a>0,b>0)的一個焦點(diǎn)為F(2,0),

a2+b2=4,

P是拋物線與雙曲線的一個交點(diǎn),|PF|=5,

P點(diǎn)橫坐標(biāo)滿足,代入拋物線y2=8xP(3,±2),

P(3,±2)代入雙曲線1(a>0,b>0)得,

整理得a4﹣37a2+36=0,

解得a2=1,或a2=36(舍)

b2=3,

所求雙曲線方程為:x21.

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;

②設(shè)有一個回歸方程,變量增加一個單位時(shí),平均增加個單位;

③線性回歸方程必過);

④在一個列聯(lián)表中,由計(jì)算得,則有以上的把握認(rèn)為這兩個變量間有關(guān)系.

其中錯誤的個數(shù)是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域是使得解析式有意義的x集合,如果對于定義域內(nèi)的任意實(shí)數(shù)x,函數(shù)值均為正,則稱此函數(shù)為“正函數(shù)”.

1)證明函數(shù)是“正函數(shù)”;

2)如果函數(shù)不是“正函數(shù)”,求正數(shù)a的取值范圍.

3)如果函數(shù)是“正函數(shù)”,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有8名馬拉松比賽志愿者,其中志愿者,通曉日語,,通曉俄語,通曉英語,從中選出通曉日語、俄語和英語的志愿者各1名,組成一個小組.

列出基本事件;

被選中的概率;

不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知都是各項(xiàng)為正數(shù)的數(shù)列,且,.對任意的正整數(shù)n,都有,,成等差數(shù)列,,,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若存在p>0,使得集合M=恰有一個元素,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對統(tǒng)計(jì)圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時(shí)間(單位:小時(shí))

1)應(yīng)抽查男生與女生各多少人?

2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時(shí)間超過2小時(shí),請完成每周平均課外閱讀時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時(shí)間與性別有關(guān)”.

男生

女生

總計(jì)

每周平均課外閱讀時(shí)間不超過2小時(shí)

每周平均課外閱讀時(shí)間超過2小時(shí)

總計(jì)

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的命題是(

A.標(biāo)準(zhǔn)差越小,則反映樣本數(shù)據(jù)的離散程度越大

B.在回歸直線方程中,當(dāng)解釋變量每增加1個單位時(shí),則預(yù)報(bào)變量減少0.4個單位

C.對分類變量來說,它們的隨機(jī)變量的觀測值越小,有關(guān)系的把握程度越大

D.在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,已知,

1)求證:;

2)設(shè)上一點(diǎn),試確定的位置,使平面,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案