分析 (1)以AB,AD,AP分別為x,y,z軸,建立如圖所示的坐標系.得到相關點的坐標,求出$\overrightarrow{PC}$,$\overrightarrow{PD}$向量,利用數(shù)量積求解即可.
(2)求出平面ACE的一個法向量,平面PAC的一個法向量利用向量的數(shù)量積列出方程求解即可.
解答 解:(1)以AB,AD,AP分別為x,y,z軸,建立如圖所示的坐標系.
則由條件知,A(0,0,0),C(1,1,0),D(0,2,0).$\overrightarrow{PC}$=(1,1,-1),$\overrightarrow{PD}$=(0,2,-1),∵$\overrightarrow{PE}=λ\overrightarrow{PD}$.當$λ=\frac{2}{3}$時,
∴E(0,$\frac{4}{3}$,$\frac{1}{3}$),$\overrightarrow{AE}$=(0,$\frac{4}{3}$,$\frac{1}{3}$),設異面直線PC與AE所成角為θ,
則$cosθ=\frac{|\overrightarrow{PC}•\overrightarrow{AE}|}{|\overrightarrow{PC}||\overrightarrow{AE}|}$=$\frac{|1×0+1×\frac{4}{3}+(-1)×\frac{1}{3}|}{\sqrt{3}×\sqrt{\frac{17}{9}}}$=$\frac{\sqrt{51}}{17}$,
異面直線PC與AE所成角的余弦值為:$\frac{\sqrt{51}}{17}$.
(2)∵$\overrightarrow{PE}=λ\overrightarrow{PD}$=(0,2λ,-λ)(0<λ<1).
∴$\overrightarrow{AE}$=$\overrightarrow{AP}+\overrightarrow{PE}$=(0,2λ,-λ+1),
由PA⊥底面ABCD,知PD與底面ABCD成30°角.
設平面ACE的一個法向量為$\overrightarrow{n}$=(x,y,z),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=0}\\{\overrightarrow{n}•\overrightarrow{AE}=0}\end{array}\right.$可得:$\left\{\begin{array}{l}{x+y=0}\\{2λy+(-λ+1)z=0}\end{array}\right.$,取$\overrightarrow{n}$=(1,1,$\frac{2λ}{1-λ}$),
設平面PAC的一個法向量為$\overrightarrow{m}$=(a,b,c),由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AC}=0}\\{\overrightarrow{m}•\overrightarrow{AP}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{a+b=0}\\{z=0}\end{array}\right.$,不妨$\overrightarrow{m}$=(1,-1,0)
則|cos$<\overrightarrow{m},\overrightarrow{n}>$|=$\frac{|1+1|}{\sqrt{2}×\sqrt{2+(\frac{2λ}{1-λ})^{2}}}$=$\frac{\sqrt{3}}{3}$,解得$λ=\frac{1}{2}$.
點評 本題考查直線與平面所稱的角,考查了利用空間向量求線面角,正確建立空間右手系是解答該題的關鍵,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com