9.已知集合M={x|-2<x<4},N={x|3x>$\frac{1}{3}$},則M∩N=(-1,4),M∪N=(-2,+∞),M∩∁RN=(-2,1].

分析 求出N中不等式的解集確定出N,找出M與N的交集,并集,求出M與N補(bǔ)集的并集即可.

解答 解:集合M={x|-2<x<4}=(-2,4),N={x|3x>$\frac{1}{3}$}=(-1,+∞),
則M∩N=(-1,4),M∪N=(-2,+∞),∁RN=(-∞,-1],
則M∩∁RN=(-2,-1],
故答案為:(-1,4),(-2,+∞),(-2,1]

點(diǎn)評 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)向量$\overrightarrow a$與$\overrightarrow b$滿足|${\overrightarrow a}$|=2,$\overrightarrow b$在$\overrightarrow a$方向上的投影為1,若存在實(shí)數(shù)λ,使得$\overrightarrow a$與$\overrightarrow a$-λ$\overrightarrow b$垂直,則λ=( 。
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知第一象限內(nèi)的點(diǎn)A(a,b)在直線x+y-2=0上,則y=$\frac{1}{a}$+$\frac{4}$的最小值是( 。
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x(lnx-ax)(a∈R),g(x)=f'(x).
(1)若曲線y=f(x) 在點(diǎn)(1,f(1))處的切線與直線3x-y-1=0平行,求實(shí)數(shù)a的值.
(2)若函數(shù)F(x)=g(x)+$\frac{1}{2}$x2
?①若函數(shù)F(x)有兩個極值點(diǎn),求a的取值范圍
?②將函數(shù)F(x)的兩個極值點(diǎn)記為s、t,且s<t,求證:-1<f(s)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)在[1,3]上的最小值;
(Ⅱ)若存在$x∈[\frac{1}{e},e]$使不等式2f(x)≥-x2+ax-3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=$\sqrt{2}$,A為PB邊上一點(diǎn),且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
(1)求證:平面PAD⊥平面PCD.
(2)在線段PB上是否存在一點(diǎn)M,使截面AMC把幾何體分成的兩部分的體積之比為V多面體PDCMA:V三棱錐M-ACB=2:1?
(3)在M滿足(2)的條件下,判斷PD是否平行于平面AMC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.給出下列命題:
(1)函數(shù)y=sin|x|不是周期函數(shù);
(2)函數(shù)y=tanx在定義域內(nèi)為增函數(shù);
(3)函數(shù)y=|cos2x+$\frac{1}{2}$|的最小正周期為$\frac{π}{2}$;
(4)函數(shù)y=4sin(2x+$\frac{π}{3}$),x∈R的一條對稱軸為$x=\frac{π}{12}$.
其中正確命題的序號是(1)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等比數(shù)列{an}中,an+1<an,a2•a8=6,a4+a6=5,則$\frac{a_4}{a_6}$等于(  )
A.$\frac{5}{6}$B.$\frac{6}{5}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為2,離心率$e=\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若P是該橢圓上的一個動點(diǎn),F(xiàn)1,F(xiàn)2是橢圓C的兩個焦點(diǎn),求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值;
(3)設(shè)過定點(diǎn)M(0,2)且斜率為k的直線l與橢圓交于不同的兩點(diǎn)A、B,在y軸上是否存在定點(diǎn)E使$\overrightarrow{AE}•\overrightarrow{BE}$為定值?若存在,求出E點(diǎn)坐標(biāo)和這個定值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案