20.已知第一象限內(nèi)的點(diǎn)A(a,b)在直線x+y-2=0上,則y=$\frac{1}{a}$+$\frac{4}$的最小值是( 。
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.5

分析 A(a,b)在直線x+y-2=0上,可得a+b=2,a,b>0.再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵A(a,b)在直線x+y-2=0上,
∴a+b=2,
∴y=$\frac{1}{a}$+$\frac{4}$=$\frac{1}{2}$($\frac{1}{a}$+$\frac{4}$)(a+b)=$\frac{1}{2}$(1+4+$\frac{a}$+$\frac{4a}$)≥$\frac{1}{2}$(5+2$\sqrt{\frac{4a}•\frac{a}}$)=$\frac{9}{2}$,當(dāng)且僅當(dāng)a=$\frac{2}{3}$,b=$\frac{4}{3}$時(shí)取等號(hào),
故y=$\frac{1}{a}$+$\frac{4}$的最小值是$\frac{9}{2}$,
故選:C.

點(diǎn)評(píng) 本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=x2+ax2015+bx2017-8,且f(-$\sqrt{2}$)=10,則f($\sqrt{2}$)=( 。
A.-10B.-12C.-22D.-26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知△ABC的頂點(diǎn)B(-1,-3),邊AB上的高CE所在直線的方程為4x+3y-7=0,BC邊上中線AD所在的直線方程為x-3y-3=0.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.2015年10月4日凌晨3點(diǎn),代號(hào)為“彩虹”的臺(tái)風(fēng)中心位于A港口的東南方向B處,且臺(tái)風(fēng)中心B與A港口的距離為400$\sqrt{2}$千米.預(yù)計(jì)臺(tái)風(fēng)中心將以40千米/時(shí)的速度向正北方向移動(dòng),離臺(tái)風(fēng)中心500千米的范圍都會(huì)受到臺(tái)風(fēng)影響,則A港口從受到臺(tái)風(fēng)影響到影響結(jié)束,將持續(xù)15小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,M為線段AB的中點(diǎn),若∠MOB=60°,則該橢圓的離心率e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)正三棱錐的四個(gè)頂點(diǎn)都在直徑為2的球面上,其中底面的三個(gè)頂點(diǎn)在該球的一個(gè)大圓上,則該正三棱錐的體積是(  )
A.2$\sqrt{3}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={-2,2a-1},B={a2+a-4,a2-2,2},且A∩B={-2},則實(shí)數(shù)a的值是( 。
A.0B.1C.0或1D.-2或1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知集合M={x|-2<x<4},N={x|3x>$\frac{1}{3}$},則M∩N=(-1,4),M∪N=(-2,+∞),M∩∁RN=(-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在下列區(qū)間中,2x2-2x=0有實(shí)數(shù)解的是( 。
A.(-3,-2)B.(-1,0)C.(2,3)D.(4,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案