由一條直線2x-y+2=0與兩坐標(biāo)軸圍成一直角三角形,則該三角形內(nèi)切圓半徑為
 
,外接圓半徑為
 
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:直線2x-y+2=0交y軸于A(0,2),交x軸于B(1,0),從而|OA|=2,|OB|=1,|AB|=
5
,設(shè)直線2x-y+2=0與兩坐標(biāo)軸圍成的直角三角形的內(nèi)切圓半徑為r,則|AB|=3-2r;設(shè)直線2x-y+2=0與兩坐標(biāo)軸圍成的直角三角形的外切圓半徑為R,則2R=|AB|=
5
.由此能求出結(jié)果.
解答: 解:如圖,直線2x-y+2=0中,
由x=0,得y=2,故A(0,2),
由y=0,得x=-1,故B(1,0),
∴|OA|=2,|OB|=1,|AB|=
5

設(shè)直線2x-y+2=0與兩坐標(biāo)軸圍成的直角三角形的內(nèi)切圓半徑為r,
則則|AB|=3-2r,
解得r=
3-
5
2
,
設(shè)直線2x-y+2=0與兩坐標(biāo)軸圍成的直角三角形的外切圓半徑為R,
則2R=|AB|=
5
,
解得R=
5
2

故答案為:
3-
5
2
5
2
點評:本題考查三角形的內(nèi)切圓和外接圓的半徑的求法,是中檔題,解題時要認(rèn)真審題,注意圓的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的通項公式為an=2009-7n,則使an<0的最小n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足
x+y-2≤0
2x-y+2≥0
y≥0
,則z=y-x的最大值為( 。
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)滿足條件f(0)=1及f(x+1)-f(x)=2x,求f(x).
(2)若f(x)滿足關(guān)系式f(x)+2f(
1
x
)=3x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|1+
x-1
3
|≤2;命題q:x2+2x+1-m2≤0(m>0).若?p是?q的必要而不充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax2+1(a<0,-1≤x≤2)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax     (x≤0)
3a-x
1
2
(x>0)
(a>0,且a≠1)是R上的減函數(shù),則a的取值范圍是( 。
A、(
9
4
,3)
B、(0,
1
3
]
C、(0,3)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位從一所學(xué)校招收某類特殊人才.對20位已經(jīng)選拔入圍的學(xué)生進(jìn)行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
邏輯思維能力運動協(xié)調(diào)能力一般良好優(yōu)秀
一般221
良好4b1
優(yōu)秀13a
例如,表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生有2人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這20位參加測試的學(xué)生中隨機(jī)抽取一位,抽到運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率為
2
5

(Ⅰ)求a,b的值;
(Ⅱ)從參加測試的20位學(xué)生中任意抽取2位,求其中至少有一位運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率;
(Ⅲ)從參加測試的20位學(xué)生中任意抽取2位,設(shè)運動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為ξ,求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)討論課上,游戲正在進(jìn)行,班長和學(xué)習(xí)委員各舉一個標(biāo)牌,一個寫著集合A={x|0<x-a≤5},另一個寫著集合B={x|-
a
2
<x≤6},回答老師提出的問題:
(1)若A⊆B,求實數(shù)a的取值范圍;
(2)若B⊆A,求實數(shù)a的取值范圍;
(3)A與B能否相等?若能,求出a的值;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案