9.已知集合A只含有一個(gè)元素a,則下列各式中正確的是( 。
A.0∈AB.a∈AC.3∉AD.a=A

分析 集合A只含有一個(gè)元素a,可得A={a},即可判斷出結(jié)論.

解答 解:∵集合A只含有一個(gè)元素a,∴A={a},∴a∈A.
因此B正確.
故選:B.

點(diǎn)評(píng) 本題考查了元素與集合之間的關(guān)系及其性質(zhì),考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.把一個(gè)含45°角的直角三角板BEF和一個(gè)正方形ABCD疊放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)B重合,點(diǎn)E,F(xiàn)分別在正方形的邊CB,AB上,易知:AF=CE,AF⊥CE.(如圖1)(不要證明)
(1)將圖1中的直角三角板BEF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度(0<α<45),連接AF,CE,(如圖2),試證明:AF=CE,AF⊥CE.
猜想與發(fā)現(xiàn):
(2)將圖2中的直角三角板BEF繞點(diǎn)B順時(shí)針繼續(xù)旋轉(zhuǎn),使BF落在BC邊上,連接AF,CE,(如圖3),點(diǎn)M,N分別為AF,CE的中點(diǎn),連接MB,BN.
①M(fèi)B,BN的數(shù)量關(guān)系是相等;
②MB,BN的位置關(guān)系是垂直.
變式與探究:
(3)圖1中的直角三角板BEF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,點(diǎn)M,N分別為DF,EF的中點(diǎn),連接MA,MN,(如圖4),MA,MN的數(shù)量關(guān)系、位置關(guān)系又如何?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)a,b,m,n∈R,且a2+b2=3,ma+nb=3,則$\sqrt{{m}^{2}{+n}^{2}}$的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列說(shuō)法中正確的是( 。
A.命題“若a>b>0,則$\frac{1}{a}$<$\frac{1}$”的逆命題是真命題
B.命題p:?x∈R,x2-x+1>0,則¬p:?x0∈R,x02-x0+1<0
C.“a>1,b>1”是“ab>1”成立的充分條件
D.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果x服從正態(tài)分布N(1,σ2)(σ>0),若x在(0,1)內(nèi)取值的概率為0.4,則x在(0,2)內(nèi)取值的概率為0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.為第k位碼元,二元碼是通信中常用的碼,但在通信過(guò)程中有時(shí)會(huì)發(fā)生碼元錯(cuò)誤(即碼元由0變?yōu)?,或者由1變?yōu)?).
已知某種二元碼x1x2…x7的碼元滿足如下校驗(yàn)方程組:⊕$\left\{\begin{array}{l}{{x}_{4}⊕{x}_{5}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{2}⊕{x}_{3}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{1}⊕{x}_{3}⊕{x}_{5}⊕{x}_{7}=0}\end{array}\right.$,其中運(yùn)算⊕定義為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
現(xiàn)已知一個(gè)這種二元碼在通信過(guò)程中僅在第k位發(fā)生碼元錯(cuò)誤后變成了1101101,那么利用上述校驗(yàn)方程組可判定k等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,某城市有一塊半徑為40m的半圓形綠化區(qū)域(以O(shè)為圓心,AB為直徑),現(xiàn)對(duì)其進(jìn)行改建,在AB的延長(zhǎng)線上取點(diǎn)D,OD=80m,在半圓上選定一點(diǎn)C,改建后綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為Scm2.設(shè)∠AOC=xrad.
(1)寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍;
(2)試問(wèn)∠AOC多大時(shí),改建后的綠化區(qū)域面積S取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.二次函數(shù)y=ax2+(b-8)x-a-ab,當(dāng)-3<x<2時(shí),y>0,當(dāng)x<-3或x>2時(shí)y<0.
(1)求二次函數(shù)的解析式;
(2)求y=ax2+(b-8)x-a-ab在0≤x≤1時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求直線l:2x-y+3=0,關(guān)于y=-x對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知變量x,y滿足條件$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤2}\\{2y-x≥1}\end{array}\right.$,
(1)求z=2x+y的取值范圍;
(2)求$\sqrt{(x-1)^{2}+{y}^{2}}$的最小值;
(3)求$\frac{y+1}{x+1}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案