已知sinθ+cosθ=
3
+1
2
,求
sinθ
1-
1
tanθ
+
cosθ
1-tanθ
的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:利用同角三角函數(shù)的基本關(guān)系化簡要求的式子為cosθ+sinθ,利用條件可得結(jié)果.
解答: 解:
sinθ
1-
1
tanθ
+
cosθ
1-tanθ
=
sinθ
1-
cosθ
sinθ
+
cosθ
1-
sinθ
cosθ
=
sin2θ
sinθ-cosθ
+
cos2θ
cosθ-sinθ
 
=
cos2θ-sin2θ
cosθ-sinθ
=cosθ+sinθ=
3
+1
2
點評:本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求y=x-
x
4
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

體積為
2
6
的三棱錐S-ABC的所有頂點都在球O的球面上,已知△ABC是邊長為1的正三角形,SC為球O的直徑,則球O的表面積為( 。
A、πB、2πC、4πD、6π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
3x(0<x≤1)
log2(x-1)(1<x≤3)
,若f(f(t))∈[0,1],則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一次在北京召開的國際數(shù)學家大會,會標如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一個大正方形,大正方形的面積是1,小正方形的面積是
1
25
,現(xiàn)在在線段AF與FB上任取一點P,則點P落在線段AF上的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,A,C為圖象與x軸的兩個交點,B為圖象的最低點,若在曲線
ABC
與x軸所圍成的區(qū)域內(nèi)隨機抽取一點,則該點在△ABC內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,sinx),
b
=(cos(2x+
π
3
),sinx),且f(x)=
a
b

(1)求函數(shù)f(x)的最大值和最小正周期;
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,若cosB=
1
3
,f(
C
2
)=-
1
4
,且C為銳角,求sinA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1所示,點D是等邊三角形ABC的邊BC上一點,連結(jié)AD作∠ADE=60°,交∠ABC的外角平分線CE于E
(1)求證:AD=DE;
(2)當點D運動到CB的延長線上是,如圖2所示,(1)中的結(jié)論是否仍然成立?若成立,請給出證明.若不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a5+a8=4,則{an}的前12項和S12=
 

查看答案和解析>>

同步練習冊答案