5.已知函數(shù)f(x)=x+$\frac{1}{x}$,下列結(jié)論正確的是(  )
A.x=-1是f(x)的極小值點B.x=1是f(x)的極大值點
C.(1,+∞)是f(x)的單調(diào)增區(qū)間D.(-1,1)是f(x)的單調(diào)增區(qū)間

分析 求導(dǎo)數(shù)得到$f′(x)=1-\frac{1}{{x}^{2}}$,由f′(x)=0即可得到x=±1,這樣即可判斷導(dǎo)數(shù)f′(x)的符號,從而得出f(x)的極值點,并可判斷f(x)的單調(diào)性,從而找出正確選項.

解答 解:$f′(x)=1-\frac{1}{{x}^{2}}$,令f′(x)=0,則x=±1;
x<-1時,f′(x)>0,-1<x<1時,f′(x)<0,x>1時,f′(x)>0;
∴x=-1是f(x)的極大值點,x=1是f(x)的極小值點,(-1,1)是f(x)的單調(diào)減區(qū)間,(1,+∞)是f(x)的單調(diào)增區(qū)間.
故選C.

點評 考查根據(jù)導(dǎo)數(shù)符號求函數(shù)極值點的方法和過程,以及根據(jù)導(dǎo)數(shù)符號判斷函數(shù)單調(diào)性的方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax2-(2a+1)x,其中a為常數(shù),且a≠0.
(1)當a=2時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=1處取得極值,且在(0,e]的最大值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.長方體ABCD-A1B1C1D1相鄰的三個面的對角線長分別是1,2,3,則該長方外接球的面積是( 。
A.B.14πC.28πD.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)證明三倍角的余弦公式:cos3θ=4cos3θ-3cosθ;
(2)利用等式sin36°=cos54°,求sin18°的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.當x∈(-∞,1],不等式1+2x+4x•a>0恒成立,則實數(shù)a的取值范圍為($-\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.球O1的內(nèi)接正方體的體積V1與球O2的內(nèi)接正方體V2的體積之比為64:125,則球O1與球O2的表面積之比為16:25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)a,b均為正數(shù),且a+b=1,
(Ⅰ)求證:$\frac{1}{a}$+$\frac{1}$≥4;
(Ⅱ)求證:$\frac{1}{{a}^{2016}}$+$\frac{1}{^{2016}}$≥22017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.定義$|{\begin{array}{l}a&b\\ c&d\end{array}}|$=ad-bc.若θ是銳角△ABC中最小內(nèi)角,函數(shù)f(θ)=$|{\begin{array}{l}{sinθ}&{cosθ}\\{-1}&1\end{array}}|$,則f(θ)的最大值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知Sn是等差數(shù)列{an}的前n項和,a1=2,a1+a4=a5,若Sn>32,則n的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案