1.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點,點P在雙曲線上,設(shè)PF1的中點在y軸上,且cos∠F1PF2=$\frac{1}{4}$,則雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{15}}{3}$C.$\sqrt{2}$D.$\frac{\sqrt{6}}{2}$

分析 由PF1的中點在y軸上,可得P的橫坐標(biāo)為c,即有PF2⊥x軸,令x=c,可得|PF2|,再由雙曲線的定義,可得|PF1|,在直角三角形PF1F2中,運用余弦函數(shù)的定義,化簡可得2a2=3b2,運用a,b,c的關(guān)系和離心率公式計算即可得到所求值.

解答 解:設(shè)F1(-c,0),F(xiàn)2(c,0),
由PF1的中點在y軸上,可得P的橫坐標(biāo)為c,
即有PF2⊥x軸,令x=c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
可得|PF1|-|PF2|=2a,即|PF1|=|PF2|+2a=$\frac{^{2}}{a}$+2a,
在直角三角形PF1F2中,可得
cos∠F1PF2=$\frac{|P{F}_{2}|}{|P{F}_{1}|}$=$\frac{\frac{^{2}}{a}}{\frac{^{2}}{a}+2a}$=$\frac{1}{4}$,
即為2a2+b2=4b2,即3b2=3c2-3a2=2a2,
即有c2=$\frac{5}{3}$a2,可得e=$\frac{c}{a}$=$\frac{\sqrt{15}}{3}$.
故選:B.

點評 本題考查雙曲線的離心率的求法,注意運用中點坐標(biāo)公式和雙曲線的定義、以及余弦函數(shù)的定義,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了保護(hù)環(huán)境,實現(xiàn)城市綠化,某小區(qū)要在空地長方形ABCD上規(guī)劃出一塊長方形地面建造草坪CGPH,草坪一邊落在CD上,一個頂點P在水池△AEF的邊EF上,(如圖,其中AB=200 m,BC=160m,AE=60m,AF=40m),設(shè)CG=xm,草坪的面積為f(x).
(1)求函數(shù)y=f(x)的解析式,并寫出它的定義域;
(2)求草坪面積的最大值,井求出此時CG的長度.(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知某輪船速度為每小時10千米,燃料費為每小時30元,其余費用(不隨速度變化)為每小時480元,設(shè)輪船的燃料費用與其速度的立方成正比,問輪船航行的速度為每小時多少千米時,每千米航行費用總和為最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖SA⊥面ABC,AB=3,BC=4,AC=5,AE⊥SB,求證:(1)BC⊥面SAB;(2)AE⊥面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若數(shù)列{an}滿足a2-a1>a3-a2>a4-a3>…>an+1-an>…,則稱數(shù)列{an}為“差遞減”數(shù)列,若數(shù)列{an}是“差遞減”數(shù)列,且其通項an與其前n項和Sn(n∈N*)滿足2Sn=3an+2λ-1(n∈N*),則實數(shù)λ的取值范圍是$λ>\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若(a-2+2ai)i為實數(shù)(其中a∈R,i為虛數(shù)單位),則|$\frac{a+i}{i}$|=( 。
A.5B.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a、b是方程x+lgx=4、x+10x=4的解,函數(shù)φ(x)=sin[(a+b)x+a],則函數(shù)y=φ(x)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過點(0,-3)且平行于直線2x+3y-4=0的直線方程是2x+3y+9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示,直角梯形OABE,直線x=t左邊截得面積S=f(t)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案