9.對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論
(1)f(x1+x2)=f(x1)f(x2)        
(2)f(x1•x2)=f(x1)+f(x2
(3)$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0              
(4)f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
(5)f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$     
(6)f(-x)=f(x).
當(dāng)f(x)=lgx時(shí),上述結(jié)論正確的序號為(2)(3)(5).(注:把你認(rèn)為正確的命題的序號都填上).

分析 利用對數(shù)的基本運(yùn)算性質(zhì)進(jìn)行檢驗(yàn):(1)f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1•lgx2
(2)f(x1•x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2),(3)f(x)=lgx在(0,+∞)單調(diào)遞增,可得 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0
(4)(5)f($\frac{{x}_{1}+{x}_{2}}{2}$)=lg($\frac{{x}_{1}+{x}_{2}}{2}$),$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{lg{x}_{1}+lg{x}_{2}}{2}$,由基本不等式可得結(jié)果.
(6)利用函數(shù)的奇偶性判斷即可.

解答 解:(1)f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1•lgx2
所以(1)不正確;
(2)f(x1•x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2)所以(2)正確;
(3)f(x)=lgx在(0,+∞)單調(diào)遞增,則對任意的0<x1<x2,d都有f(x1)<f(x2
即$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,所以(3)正確.
(4)f($\frac{{x}_{1}+{x}_{2}}{2}$)=lg($\frac{{x}_{1}+{x}_{2}}{2}$),$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{lg{x}_{1}+lg{x}_{2}}{2}$=$\frac{lg({x}_{1}{x}_{2})}{2}$
∵$\frac{{x}_{1}+{x}_{2}}{2}$≥$\sqrt{{x}_{1}{x}_{2}}$∴l(xiāng)g$\frac{{x}_{1}+{x}_{2}}{2}$≥lg$\sqrt{{x}_{1}{x}_{2}}$=$\frac{1}{2}$lg(x1x2),所以(4)不正確;(5)正確;
(6)f(x)=lgx函數(shù)不是偶函數(shù),所以(6)不正確.
故答案為:(2)(3)(5).

點(diǎn)評 本題主要考查了對數(shù)的基本運(yùn)算性質(zhì),對數(shù)函數(shù)單調(diào) 性的應(yīng)用,基本不等式的應(yīng)用,屬于知識的簡單綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在正方形ABCD中,點(diǎn)E是DC的中點(diǎn),點(diǎn)F是BC的一個(gè)三等分點(diǎn),那么$\overrightarrow{EF}$=$\frac{1}{2}\overrightarrow{AB}$$-\frac{2}{3}\overrightarrow{AD}$(用$\overrightarrow{AB}$和$\overrightarrow{AD}$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知log2m=3.5,log2n=0.5,則( 。
A.m+n=4B.m-n=3C.$\frac{m}{n}=7$D.m•n=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知p:?x∈R,cos2x-sinx+2≤m;q:函數(shù)$f(x)={({\frac{1}{3}})^{2{x^2}-mx+2}}$在[1,+∞)上單調(diào)遞減.
( I)若p∧q為真命題,求m的取值范圍;
( II)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$.
(Ⅰ) 求f (x)的最小正周期.
(Ⅱ) 求f (x) 在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某校從高一年級學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測試成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知高一年級共有學(xué)生600名,據(jù)此估計(jì),該模塊測試成績不少于60分的學(xué)生人數(shù)為( 。
A.588B.480C.450D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=2x3-6x2+11的單調(diào)減區(qū)間是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合$A=\left\{{\left|{\frac{x-2}{2x-1}>}\right.0}\right\}$,B={x|bx<1},若A∪B=R,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=sin2x向右平移$\frac{π}{6}$個(gè)單位后,得到y(tǒng)=g(x),則關(guān)于y=g(x)的說法正確的是( 。
A.圖象關(guān)于點(diǎn)$({-\frac{π}{6},0})$中心對稱B.圖象關(guān)于$x=-\frac{π}{6}$軸對稱
C.在區(qū)間$[{-\frac{5π}{12},-\frac{π}{6}}]$單調(diào)遞增D.在$[{-\frac{π}{12},\frac{5π}{12}}]$單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案