1.函數(shù)y=2x3-6x2+11的單調(diào)減區(qū)間是(0,2).

分析 求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的遞減區(qū)間即可.

解答 解:y=2x3-6x2+11,
y′=6x2-12x=6x(x-2),
令y′<0,解得:0<x<2,
故函數(shù)的遞減區(qū)間是(0,2),
故答案為:(0,2).

點評 本題考查了求函數(shù)的單調(diào)性問題,考查導數(shù)的應用,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an-n
(1)求證數(shù)列{an+1}是等比數(shù)列并求{an}的通項公式
(2)設bn=(2n+1)(an+1),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知:函數(shù)f(x)=loga(2+x)-loga(2-x)(a>0且a≠1)
(Ⅰ)求f(x)定義域;
(Ⅱ)判斷f(x)的奇偶性,并說明理由;
(Ⅲ)求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結論
(1)f(x1+x2)=f(x1)f(x2)        
(2)f(x1•x2)=f(x1)+f(x2
(3)$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0              
(4)f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
(5)f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$     
(6)f(-x)=f(x).
當f(x)=lgx時,上述結論正確的序號為(2)(3)(5).(注:把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如果一個函數(shù)的瞬時變化率處處為0,則這個函數(shù)的圖象是(  )
A.B.拋物線C.橢圓D.直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{x}^{-2},x<0}\end{array}\right.$,若f(x0)=1,則x0的值是10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若函數(shù)f(x)=x2+(a+2)x+3是定義域上[a,b]的偶函數(shù),則實數(shù)b=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=arcsin(x2-x)的值域為[-arcsin$\frac{1}{4}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在四面體P-ABC中,PA,PB,PC兩兩垂直,設PA=PB=PC=a,則點P到平面ABC的距離為( 。
A.$\frac{\sqrt{2}a}{3}$B.$\frac{\sqrt{3}a}{3}$C.$\frac{\sqrt{6}a}{3}$D.$\frac{\sqrt{5}a}{3}$

查看答案和解析>>

同步練習冊答案