【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點(diǎn)M、F分別是線段AA1、BC的中點(diǎn).

(1)求證:AF⊥DD1;

(2)求證:AF∥平面MBC1

【答案】(1)見證明(2)見證明

【解析】

(1)由題意可得AFBC.再結(jié)合平面底面,得到AF⊥平面,

可得到AFCC1,根據(jù)CC1DD1,證得AFDD1

(2)先根據(jù)平行六面體中的線線平行,證出四邊形AFEM是平行四邊形,得到EM // AF,即可證明線面平行.

證明:(1)∵ABAC,點(diǎn)F是線段BC的中點(diǎn),

AFBC.又∵平面底面,AF平面ABC

平面底面,

AF⊥平面

CC1平面,∴AFCC1,

CC1DD1,∴AFDD1

(2)連結(jié)B1CBC1交于點(diǎn)E,連結(jié)EM,FE

在斜三棱中,四邊形BCC1B1是平行四邊形,

∴點(diǎn)EB1C的中點(diǎn).

∵點(diǎn)FBC的中點(diǎn),

FE//B1B,FEB1B

又∵點(diǎn)M是平行四邊形BCC1B1AA1的中點(diǎn),

AM//B1B,AMB1B

AM// FE,AMFE

∴四邊形AFEM是平行四邊形.

EM // AF

EM平面MBC1,AF平面MBC1,

AF //平面MBC1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)).

(1)證明:①當(dāng)時(shí),;

②當(dāng)時(shí),.

(2)是否存在最大的整數(shù),使得函數(shù)在其定義域上是增函數(shù)?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的動(dòng)直線與雙曲線相交于兩點(diǎn).軸上是否存在定點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年元旦班級(jí)聯(lián)歡晚會(huì)上,某班在聯(lián)歡會(huì)上設(shè)計(jì)了一個(gè)摸球表演節(jié)目的游戲,在一個(gè)紙盒中裝有1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球,這些球除顏色外完全相同,A同學(xué)不放回地每次摸出1個(gè)球,若摸到黑球則停止摸球,否則就要將紙盒中的球全部摸出才停止.規(guī)定摸到紅球表演兩個(gè)節(jié)目,摸到白球或黃球表演一個(gè)節(jié)目,摸到黑球不用表演節(jié)目.

(1)求A同學(xué)摸球三次后停止摸球的概率;

(2)記X為A同學(xué)摸球后表演節(jié)目的個(gè)數(shù),求隨機(jī)變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)多項(xiàng)式的系數(shù)都是自然數(shù),則稱為“自然多項(xiàng)式”.對(duì)正整數(shù),用表示滿足的不同自然多項(xiàng)式的個(gè)數(shù).證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證;

(3)設(shè),對(duì)于任意時(shí),總存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,為等比數(shù)列,公比為q(q≠1).令A(yù)=.A={1,2},

(1)當(dāng),求數(shù)列的通項(xiàng)公式;

(2)設(shè),q>0,試比較(n≥3)的大。坎⒆C明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù). 設(shè)的導(dǎo)函數(shù).

(Ⅰ)若時(shí),函數(shù)處的切線經(jīng)過點(diǎn),求的值;

(Ⅱ)求函數(shù)在區(qū)間上的單調(diào)區(qū)間;

(Ⅲ)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個(gè)公共點(diǎn),求的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案