【題目】已知為等差數(shù)列,為等比數(shù)列,公比為q(q≠1).令A(yù)=.A={1,2},
(1)當(dāng),求數(shù)列的通項(xiàng)公式;
(2)設(shè),q>0,試比較與(n≥3)的大小?并證明你的結(jié)論.
【答案】(1); (2)當(dāng)時(shí),<(n≥3);當(dāng)時(shí),>(n≥3);當(dāng)時(shí),=(n≥3).
【解析】
(1)由,可得數(shù)列的通項(xiàng)公式;(2)根據(jù)當(dāng)時(shí),當(dāng)時(shí)分類(lèi)討論,比較與(n≥3)的大。挥脭(shù)學(xué)歸納法加以證明;
(1)A={1,2},,所以,,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,;
(2)當(dāng)時(shí),<(n≥3);當(dāng)時(shí),=(n≥3);當(dāng)時(shí),>(n≥3)
證明:當(dāng)時(shí),則,數(shù)列與單調(diào)遞增,
使用數(shù)學(xué)歸納法證明,當(dāng)時(shí),,,
所以,即;
若<(n≥3),,,
所以,即有,
綜上所述,當(dāng)時(shí),<(n≥3),
同理可得,當(dāng)時(shí),>(n≥3),當(dāng)時(shí),=(n≥3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面一道題目的證明,指出其中的一處錯(cuò)誤。題目:平面上有六個(gè)點(diǎn),任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn),則這些三角形中有一個(gè)的最短邊又是另一個(gè)三角形的最長(zhǎng)邊。證明:第一步,對(duì)已知的六個(gè)點(diǎn)作兩兩連線(xiàn),可以得出15條邊,記為,,…,.第二步,由于任何三點(diǎn)組成的都是“三邊互不相等的三角形”,因此,15條邊互不相等不妨設(shè).第三步,由于“任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn)”,因此,任取三條邊都可以組成三角形,則、、組成的三角形的最長(zhǎng)邊,也是、、組成的三角形的最短邊,命題得證.這三步中,第______步有錯(cuò)誤,理由是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題:
①若為真命題,則為真命題;
②命題“,有”的否定為“,有”;
③“平面向量與的夾角為鈍角”的充分不必要條件是“”;
④在銳角三角形中,必有;
⑤為等差數(shù)列,若,則
其中正確命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點(diǎn)M、F分別是線(xiàn)段AA1、BC的中點(diǎn).
(1)求證:AF⊥DD1;
(2)求證:AF∥平面MBC1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列{n∈N+}.
求a2,a3,a4及b2,b3,b4,由此猜測(cè){an},{bn}的通項(xiàng)公式,并證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知雙曲線(xiàn).
(1)過(guò)曲線(xiàn)的左頂點(diǎn)作的兩條漸近線(xiàn)的平行線(xiàn),求這兩組平行線(xiàn)圍成的平行四邊形的面積;
(2)設(shè)斜率為的直線(xiàn)交曲線(xiàn)于、兩點(diǎn),若與圓相切,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成二面角的正弦值;
(Ⅲ)若點(diǎn)在線(xiàn)段上,且直線(xiàn)與平面所成角的正弦值為,求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),試判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com