【題目】已知為等差數(shù)列,為等比數(shù)列,公比為q(q≠1).令A(yù)=.A={1,2},

(1)當(dāng),求數(shù)列的通項(xiàng)公式;

(2)設(shè),q>0,試比較(n≥3)的大小?并證明你的結(jié)論.

【答案】(1); (2)當(dāng)時(shí),(n≥3);當(dāng)時(shí),(n≥3);當(dāng)時(shí),(n≥3).

【解析】

1)由,可得數(shù)列的通項(xiàng)公式;(2)根據(jù)當(dāng)時(shí),當(dāng)時(shí)分類(lèi)討論,比較(n≥3)的大。挥脭(shù)學(xué)歸納法加以證明;

1)A={1,2},,所以,,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,;

(2)當(dāng)時(shí),(n≥3);當(dāng)時(shí),(n≥3);當(dāng)時(shí),(n≥3)

證明:當(dāng)時(shí),則,數(shù)列單調(diào)遞增,

使用數(shù)學(xué)歸納法證明,當(dāng)時(shí),,

所以,即;

(n≥3),,

所以,即有

綜上所述,當(dāng)時(shí),(n≥3),

同理可得,當(dāng)時(shí),(n≥3),當(dāng)時(shí),(n≥3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面一道題目的證明,指出其中的一處錯(cuò)誤。題目:平面上有六個(gè)點(diǎn),任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn),則這些三角形中有一個(gè)的最短邊又是另一個(gè)三角形的最長(zhǎng)邊。證明:第一步,對(duì)已知的六個(gè)點(diǎn)作兩兩連線(xiàn),可以得出15條邊,記為,,…,.第二步,由于任何三點(diǎn)組成的都是“三邊互不相等的三角形”,因此,15條邊互不相等不妨設(shè).第三步,由于“任何三點(diǎn)都是三邊互不相等三角形的頂點(diǎn)”,因此,任取三條邊都可以組成三角形,則、組成的三角形的最長(zhǎng)邊,也是、組成的三角形的最短邊,命題得證.這三步中,第______步有錯(cuò)誤,理由是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

為真命題,則為真命題;

命題“,有”的否定為“,有”;

“平面向量的夾角為鈍角”的充分不必要條件是“”;

在銳角三角形中,必有;

為等差數(shù)列,若,則

其中正確命題的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點(diǎn)M、F分別是線(xiàn)段AA1、BC的中點(diǎn).

(1)求證:AF⊥DD1;

(2)求證:AF∥平面MBC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an},{bn}中,a1=2,b1=4,且anbn,an1成等差數(shù)列,bnan1,bn1成等比數(shù)列{nN}.

a2a3,a4b2b3,b4,由此猜測(cè){an},{bn}的通項(xiàng)公式,并證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知雙曲線(xiàn).

1)過(guò)曲線(xiàn)的左頂點(diǎn)作的兩條漸近線(xiàn)的平行線(xiàn),求這兩組平行線(xiàn)圍成的平行四邊形的面積;

2)設(shè)斜率為的直線(xiàn)交曲線(xiàn)兩點(diǎn),若與圓相切,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面.

(Ⅰ)求證:平面

(Ⅱ)求平面與平面所成二面角的正弦值;

(Ⅲ)若點(diǎn)在線(xiàn)段上,且直線(xiàn)與平面所成角的正弦值為,求線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:

(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)若,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),試判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案