已知正三棱錐S-ABC的所有棱長均為a,則S-ABC的外接球的體積是
 
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:由正三棱錐S-ABC的所有棱長均為a,所以此三棱錐一定可以放在棱長為
2
2
a的正方體中,所以此四面體的外接球即為此正方體的外接球,由此能求出此四面體的外接球的半徑,再代入面積公式、體積公式計算.
解答: 解:∵正三棱錐S-ABC的所有棱長均為a,
∴此三棱錐一定可以放在正方體中,
∴我們可以在正方體中尋找此三棱錐.
∴正方體的棱長為
2
2
a,
∴此四面體的外接球即為此正方體的外接球,
∵外接球的直徑為正方體的對角線長,
∴外接球的半徑為R=
1
2
×
1
2
+
1
2
+
1
2
a=
6
4
a,
∴球的體積為V=
4
3
πR3=
6
8
πa3,
故答案為:πa3
點評:本題考查幾何體的接體問題,考查了空間想象能力,其解答的關(guān)鍵是根據(jù)幾何體的結(jié)構(gòu)特征,求出接體幾何元素的數(shù)據(jù),代入面積、體積公式分別求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a≠b,數(shù)列a,x1,x2,b和數(shù)列a,y1,y2,b都是等差數(shù)列,則 
x2-x1
y2-y1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),當x∈[-1,1]時,f(x)=x2-x,且對?x滿足f(x-1)=2f(x),則函數(shù)f(x)在區(qū)間[5,7]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上,中點在原點的雙曲線C,漸近線方程是2x±3y=0,焦距為2
13
,則雙曲線方程C是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用判別式求下列函數(shù)的值域:
(1)y=(x2-x+3)÷(x2-x+1);
(2)y=8÷(x2-4x+5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-x的圖象與函數(shù)y=
 
的圖象關(guān)于y軸對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=xx的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|ax=1},且A∩B=B.
(1)求實數(shù)a組成的集合M;
(2)求集合M的所有真子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試比較(n+1)2與3n(n∈N*)的大小,并給出證明(結(jié)合數(shù)學(xué)歸納法).

查看答案和解析>>

同步練習(xí)冊答案