已知焦點(diǎn)在x軸上,中點(diǎn)在原點(diǎn)的雙曲線C,漸近線方程是2x±3y=0,焦距為2
13
,則雙曲線方程C是
 
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1(a,b>0)由已知條件可得c=
13
,且
b
a
=
2
3
,又a2+b2=c2,解出a,b即可.
解答: 解:由題意設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1(a,b>0),
由于漸近線方程是2x±3y=0,焦距為2
13
,
則c=
13
,且
b
a
=
2
3
,又a2+b2=c2,
解得a=3,b=2.
則雙曲線的方程為
x2
9
-
y2
4
=1.
故答案為:
x2
9
-
y2
4
=1.
點(diǎn)評(píng):本題主要考查了利用雙曲線的性質(zhì)求解雙曲線的方程,解題的關(guān)鍵是根據(jù)條件設(shè)雙曲線方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
的定義域?yàn)镸,g(x)=2+ln(1+x)的定義域?yàn)镹,則M∩N=( 。
A、{x|x≤1}
B、{x|-1<x<1}
C、{x|-1<x≤1}
D、{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

研究函數(shù)f(x)=
x+a
x+b
(a>b)的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用換元法求函數(shù)f(x)=x-
1-x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2+(k-3)x+k2與x軸的交點(diǎn)一個(gè)小于1,一個(gè)大于1,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)的定義域是[0,2],求g(x)=f(x+
1
2
)-f(x-
1
2
)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐S-ABC的所有棱長(zhǎng)均為a,則S-ABC的外接球的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線E:
x2
a2
-
y2
b2
=1(b≥
2
a>0)的左、右焦點(diǎn)分別為F1、F2,其上的任意一點(diǎn)P,滿(mǎn)足
PF1
PF2
≤2a2,過(guò)F1作垂直于雙曲線實(shí)軸的弦長(zhǎng)為8.求雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ACB中,已知∠A=
π
4
,|BC|=2,設(shè)∠ACB=θ,θ∈(
π
2
,
4
).
(I)用θ表示|CA|;
(Ⅱ)求f(θ)=
CA
CB
的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案