函數(shù)y=x2-x的圖象與函數(shù)y=
 
的圖象關(guān)于y軸對(duì)稱.
考點(diǎn):奇偶函數(shù)圖象的對(duì)稱性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)圖象對(duì)稱變換法則,求出函數(shù)y=x2-x的圖象關(guān)于y軸對(duì)稱變換后函數(shù)圖象對(duì)應(yīng)的函數(shù)解析式,可得答案.
解答: 解:函數(shù)y=x2-x的圖象關(guān)于y軸對(duì)稱變換可得:
y=(-x)2-(-x)=x2+x的圖象,
故函數(shù)y=x2-x的圖象與函數(shù)y=x2+x的圖象關(guān)于y軸對(duì)稱,
故答案為:x2+x
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)圖象的對(duì)稱變換,熟練掌握函數(shù)函數(shù)對(duì)稱變換法則是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M是直角坐標(biāo)平面內(nèi)方程2kx+9y-k2=0(k∈R)的直線的集合,集合S是滿足以下條件的點(diǎn)的集合:對(duì)于S中的每一個(gè)點(diǎn),在集合M中有且僅有一條直線通過(guò)該點(diǎn).
(Ⅰ)判斷下列各點(diǎn)是否為集合S中的點(diǎn):A(1,0),B(-3,-1),C(0,-1);
(Ⅱ)求集合S中的點(diǎn)的軌跡方程;
(Ⅲ)設(shè)P,Q是(Ⅱ)是軌跡上的兩點(diǎn),線段PQ的中點(diǎn)到x軸的距離為3,求線段PQ長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用換元法求函數(shù)f(x)=x-
1-x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)的定義域是[0,2],求g(x)=f(x+
1
2
)-f(x-
1
2
)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐S-ABC的所有棱長(zhǎng)均為a,則S-ABC的外接球的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2x-2+
4x-13
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線E:
x2
a2
-
y2
b2
=1(b≥
2
a>0)的左、右焦點(diǎn)分別為F1、F2,其上的任意一點(diǎn)P,滿足
PF1
PF2
≤2a2,過(guò)F1作垂直于雙曲線實(shí)軸的弦長(zhǎng)為8.求雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(2x-1)的定義域?yàn)閇-1,1],求f(x2+1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4),設(shè)
a
=
AB
,
b
=
AC

(1)求
a
b
夾角的余弦值;
(2)設(shè)|
c
|=3,
c
BC
,求
c
的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案