【題目】我國(guó)古代名著《張丘建算經(jīng)》中記載:今有方錐,下廣二丈,高三丈.欲斬末為方亭,令上方六尺.問(wèn):斬高幾何?大致意思是:有一個(gè)正四棱錐下底邊長(zhǎng)為二丈,高三丈,現(xiàn)從上面截去一段,使之成為正四棱臺(tái),且正四棱臺(tái)的上底邊長(zhǎng)為六尺,則截去的正四棱錐的高是多少.如果我們把求截去的正四棱錐的高改為求剩下的正四棱臺(tái)的體積,則該正四棱臺(tái)的體積是(注:1尺)(

A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺

【答案】B

【解析】

根據(jù)題意畫(huà)出圖形,利用棱錐與棱臺(tái)的結(jié)構(gòu)特征求出正四棱臺(tái)的高,再計(jì)算它的體積.

解:如圖所示,

正四棱錐的下底邊長(zhǎng)為二丈,即尺,

高三丈,即尺;

截去一段后,得正四棱臺(tái),且上底邊長(zhǎng)為尺,

所以,

解得,

所以該正四棱臺(tái)的體積是

(立方尺).

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解公司800名員工對(duì)公司食堂組建的需求程度,將這些員工編號(hào)為1,2,3,,800,對(duì)這些員工使用系統(tǒng)抽樣的方法等距抽取100人征求意見(jiàn),有下述三個(gè)結(jié)論:①若25號(hào)員工被抽到,則105號(hào)員工也會(huì)被抽到;②若32號(hào)員工被抽到,則1100號(hào)的員工中被抽取了10人;③若88號(hào)員工未被抽到,則10號(hào)員工一定未被抽到;其中正確的結(jié)論個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,雙曲線(xiàn)的漸近線(xiàn)與拋物線(xiàn) 交于點(diǎn)O,AB,且的垂心為的焦點(diǎn),則的離心率為______;如果在第一象限內(nèi)有且只有一個(gè)公共點(diǎn),且,那么的方程為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)函數(shù)與函數(shù)圖象的公切線(xiàn)l經(jīng)過(guò)坐標(biāo)原點(diǎn)時(shí),求實(shí)數(shù)a的取值集合;

3)證明:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),,且滿(mǎn)足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家每年都會(huì)對(duì)中小學(xué)生進(jìn)行體質(zhì)健康監(jiān)測(cè),一分鐘跳繩是監(jiān)測(cè)的項(xiàng)目之一.今年某小學(xué)對(duì)本校六年級(jí)300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計(jì),發(fā)現(xiàn)一分鐘跳繩個(gè)數(shù)最低為10,最高為189.現(xiàn)將跳繩個(gè)數(shù)分成,,,,6組,并繪制出如下的頻率分布直方圖.

1)若一分鐘跳繩個(gè)數(shù)達(dá)到160為優(yōu)秀,求該校六年級(jí)學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);

2)上級(jí)部門(mén)要對(duì)該校體質(zhì)監(jiān)測(cè)情況進(jìn)行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為.試估計(jì)此校六年級(jí)男生一分鐘跳繩個(gè)數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角中,,,D,E分別是ABBC邊的中點(diǎn),沿DE折起至,且.

1)求四棱錐的體積;

2)求證:平面平面ACF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;

(2)若交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙、丙三個(gè)企業(yè)的產(chǎn)品成本(單位:萬(wàn)元)及其構(gòu)成比例,則下列判斷正確的是(  )

A. 乙企業(yè)支付的工資所占成本的比重在三個(gè)企業(yè)中最大

B. 由于丙企業(yè)生產(chǎn)規(guī)模大,所以它的其他費(fèi)用開(kāi)支所占成本的比重也最大

C. 甲企業(yè)本著勤儉創(chuàng)業(yè)的原則,將其他費(fèi)用支出降到了最低點(diǎn)

D. 乙企業(yè)用于工資和其他費(fèi)用支出額比甲丙都高

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程只有一個(gè)實(shí)數(shù)根,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案