11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過左焦點F且垂直于x軸的弦長為1.
( I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點P(m,0)為橢圓C的長軸上的一個動點,過點P且斜率為$\frac{1}{2}$的直線l交橢圓C于A,B兩點,問:|PA|2+|PB|2是否為定值?若是,求出這個定值并證明,否則,請說明理由.

分析 (Ⅰ)利用橢圓長軸長設(shè)出橢圓方程,利用點在橢圓上,求出b,即可得到橢圓方程.
(Ⅱ)設(shè)出P,直線l的方程,聯(lián)立直線與橢圓方程,設(shè)出A、B坐標(biāo),
通過根與系數(shù)的關(guān)系,計算|PA|2+|PB|2,化簡求解即可.

解答 解:( I)由過左焦點F且垂直于x軸的弦長為1,
可知橢圓C過點$(-c,\frac{1}{2})$,∴$\frac{c^2}{a^2}+\frac{1}{{4{b^2}}}=1$,
又∵e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2=b2+c2;
三式聯(lián)立解得$a=2,b=1,c=\sqrt{3}$,
∴橢圓的方程為$\frac{{x}^{2}}{4}$+y2=1;
( II)設(shè)P(m,0)(且-2≤m≤2),由已知,直線l的方程是y=$\frac{1}{2}$(x-m),
由$\left\{\begin{array}{l}{y=\frac{1}{2}(x-m)}\\{\frac{{x}^{2}}{4}{+y}^{2}=1}\end{array}\right.$,消去y得,2x2-2mx+m2-4=0,(*)
設(shè)A(x1,y1),B(x2,y2),則x1、x2是方程(*)的兩個根,
所以有,x1+x2=m,x1x2=$\frac{{m}^{2}-4}{2}$,
所以,|PA|2+|PB|2=(x1-m)2+y12+(x2-m)2+y22
=(x1-m)2+$\frac{1}{4}$(x1-m)2+(x2-m)2+$\frac{1}{4}$(x2-m)2
=$\frac{5}{4}$[(x1-m)2+(x2-m)2]
=$\frac{5}{4}$[x12+x22-2m(x1+x2)+2m2]
=$\frac{5}{4}$[(x1+x22-2m(x1+x2)-2x1x2+2m2]
=$\frac{5}{4}$[m2-2m2-(m2-4)+2m2]=5(為定值);
所以,|PA|2+|PB|2為定值.

點評 本題考查橢圓方程的求法以及直線與橢圓的位置關(guān)系應(yīng)用問題,也考查了定值問題的化簡求解方法,是綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)中的a、b均為整數(shù),且f(0)、f(1)均為奇數(shù),則( 。
A.方程f(x)=0有兩個不相等的整數(shù)根B.方程f(x)=0沒有整數(shù)根
C.方程f(x)=0至少有一個整數(shù)根D.方程f(x)=0至多有一個整數(shù)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《九章算術(shù)》“勾股”章有一題:“今有二人同立.甲行率七,乙行率三,乙東行,甲南行十步而斜東北與乙會,問甲乙各行幾何?”大意是說:“已知甲、乙二人同時從同一地點出發(fā),甲的速度為7,乙的速度為3,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.甲、乙各走了多少步?”請問乙走的步數(shù)是( 。
A.$\frac{9}{2}$B.$\frac{15}{2}$C.$\frac{21}{2}$D.$\frac{49}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知P(x,y)為不等式組$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x-m≥0}\end{array}}\right.$表示的平面區(qū)域M內(nèi)任意一點,若目標(biāo)函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow$=(1,-2)且$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)k等于$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)點M(x,y)滿足不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,點P(-4a,a)(a>0),則當(dāng)$\overrightarrow{OP}•\overrightarrow{OM}$最大時,點M為( 。
A.(0,2)B.(0,0)C.(4,6)D.(2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等腰直角三角形ABC中,∠C=90°,AC=BC=2,點P是△ABC斜邊上任意一點,則線段CP的長度不大于$\sqrt{3}$的概率是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:?x∈(1,+∞),x3+16>8x,則命題p的否定為( 。
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知角α的頂點與坐標(biāo)原點重合,始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點P(1,-2),則sin2α=-$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案