20.已知命題p:?x∈(1,+∞),x3+16>8x,則命題p的否定為( 。
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

分析 根據(jù)全稱命題的否定是特稱命題進(jìn)行判斷即可.

解答 解:命題是全稱命題,則命題的否定是特稱命題,
即命題的否定是:¬p:?x∈(1,+∞),x3+16≤8x,
故選:C

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,根據(jù)全稱命題的否定是特稱命題,特稱命題的否定是全稱命題是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,四棱錐A-BCDE,已知平面BCDE⊥平面ABC,BE⊥EC,DE∥BC,BC=2DE=6,AB=4$\sqrt{3}$,∠ABC=30°.
(1)求證:AC⊥BE;
(2)若∠BCE=45°,求三棱錐A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過(guò)左焦點(diǎn)F且垂直于x軸的弦長(zhǎng)為1.
( I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)P(m,0)為橢圓C的長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P且斜率為$\frac{1}{2}$的直線l交橢圓C于A,B兩點(diǎn),問(wèn):|PA|2+|PB|2是否為定值?若是,求出這個(gè)定值并證明,否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在復(fù)平面內(nèi),復(fù)數(shù)z的對(duì)應(yīng)點(diǎn)為(1,-2),復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$,則($\overline{z}$)2=( 。
A.-3-4iB.-3+4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“□”:a□b=$\left\{\begin{array}{l}{{a}^{2}-ab,a≤b}\\{^{2}-ab,a>b}\end{array}\right.$設(shè)f(x)=(x-4)□($\frac{7}{4}$x-4),若關(guān)于x的方程|f(x)-m|=1(m∈R)恰有四個(gè)互不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(-1,1)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}的前 n項(xiàng)和為 Sn,且滿足a1=1,an•an+1=2Sn,設(shè)${b_n}=\frac{{2{a_n}-1}}{{{3^{a_n}}}}$,則數(shù)列{bn}的前 n項(xiàng)和為$1-\frac{n+1}{3^n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{cos(x-\frac{π}{2})}&{x∈[0,π]}\\{lo{g}_{2017}\frac{x}{π}}&{x∈(π,+∞)}\end{array}\right.$若存在三個(gè)不相等的實(shí)數(shù)a,b,c使得f(a)=f(b)=f(c),則a+b+c的取值范圍為(2π,2018π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$m=({sinx-\sqrt{3}cosx,1}),n=({sin({\frac{π}{2}+x}),\frac{{\sqrt{3}}}{2}})$,若f(x)=m•n.
(I)求f(x)的單調(diào)遞增區(qū)間;
(II)己知△ABC的三內(nèi)角A,B,C對(duì)邊分別為a,b,c,且a=3,f$({\frac{A}{2}+\frac{π}{12}})=\frac{1}{2}$,sinC=2sinB,求A,c,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)點(diǎn)M,N是拋物線y=ax2(a>0)上任意兩點(diǎn),點(diǎn)G(0,-1)滿足$\overrightarrow{GN}$•$\overrightarrow{GM}$>0,則a的取值范圍是($\frac{1}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案