分析 由題意:x∈[0,1),x與a滿(mǎn)足關(guān)系式(2-a)ea=x(2+a),求解a的值,化簡(jiǎn)f(x)可得其值域.
解答 解:由題意:x∈[0,1),x與a滿(mǎn)足關(guān)系式(2-a)ea=x(2+a),
則x=$\frac{(2-a){e}^{a}}{2+a}$,
①當(dāng)x=0時(shí),可得:(2-a)•ea=0,
解得:a=2.
那么:函數(shù)f(x)=$\frac{{{a^2}{e^a}}}{{{e^a}-(a+1)x}}$=$\frac{4{e}^{2}}{{e}^{2}-3x}$=a2=4.
②當(dāng)x≠0時(shí),可得:${e}^{a}=\frac{x(2+a)}{2-a}$,此時(shí)函數(shù)f(x)=$\frac{{a}^{2}}{1-\frac{(a+1)x}{{e}^{a}}}$=$\frac{{a}^{2}}{1-(a+1)x•\frac{2-a}{x(2+a)}}=a+2$
令a+2=t,則(4-t)et-2=x•t,且a≠0,可得t≠2.
得:x=$\frac{4-t}{t}•{e}^{t-2}$,
∵x∈(0,1),et-2>0,
∴$\frac{4-t}{t}>0$,
解得:0<t<4,
令f(t)=$\frac{4-t}{t}•{e}^{t-2}$,
則f′(t)=-$\frac{{e}^{t}(t-2)^{2}}{(et)^{2}}$在t∈(0,4)恒小于0.
∴f(t)在t∈(0,4)上單調(diào)遞減
由于x=f(t)∈(0,1),
當(dāng)t=2時(shí),f(t)=1,當(dāng)t=4時(shí),f(t)=0,
則2<t<4,即此時(shí)f(x)的值域?yàn)椋?,4).
綜上可得:函數(shù)f(x)=$\frac{{{a^2}{e^a}}}{{{e^a}-(a+1)x}}$的值域是(2,4].
故答案為(2,4].
點(diǎn)評(píng) 本題考查了導(dǎo)函數(shù)研究值域的方法,利用其單調(diào)性和轉(zhuǎn)化思想,分類(lèi)討論,構(gòu)造新的函數(shù)求其值域來(lái)達(dá)到解決原函數(shù)的值域問(wèn)題.屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而非必要條件 | B. | 必要而非充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,$\frac{5π}{6}$) | B. | (2,$\frac{2π}{3}$) | C. | (2,$\frac{5π}{3}$) | D. | (2,$\frac{11π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | e+1 | B. | e+$\frac{1}{2}$ | C. | $\frac{e}{2}$ | D. | $\frac{e}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | $\frac{1}{4}$ | C. | -4 | D. | $-\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$-1 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com