【題目】設是函數(shù)定義域內(nèi)的一個子集,若存在,使得成立,則稱是的一個“不動點”,也稱在區(qū)間上存在不動點.
設函數(shù),.
(1)若,求函數(shù)的不動點;
(2)若函數(shù)在上不存在不動點,求實數(shù)的取值范圍.
【答案】(1)0;(2)
【解析】
(1)根據(jù)新定義,當時,,求出,即可得出函數(shù)的不動點;
(2)由于函數(shù)在上不存在不動點,則在區(qū)間上無解,即在上無解,利用換元法,令,,轉(zhuǎn)化為在區(qū)間上無解,構(gòu)造新函數(shù)并求出單調(diào)區(qū)間,結(jié)合函數(shù)的恒成立問題,即可求出實數(shù)的取值范圍.
解:(1)根據(jù)題目給出的“不動點”的定義,可知:
當時,,
得,所以,所以,
所以函數(shù)的不動點為0.
(2)根據(jù)已知,得在區(qū)間上無解,
所以在上無解,
令,,所以,
即在區(qū)間上無解,
所以在區(qū)間上無解,
設,所以在區(qū)間上單調(diào)遞增,
故,
所以或,所以或,
又因為在區(qū)間上恒成立,
所以在區(qū)間上恒成立,
設,所以在區(qū)間上單調(diào)遞增,
故,所以,所以.
綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓:外切且與軸相切.
(1)求圓心的軌跡的方程;
(2)過作斜率為的直線交曲線于,兩點,
①若,求直線的方程;
②過,兩點分別作曲線的切線,,求證:,的交點恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:
分數(shù)不少于120分 | 分數(shù)不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;
(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:
AQI | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應的概率以表中100天的空氣質(zhì)量的頻率代替.
(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;
(ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為實數(shù),給出命題,;命題:函數(shù)的值域為.
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真,為假,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品均需用三種原料,一件甲產(chǎn)品需要原料,原料,原料,一件乙產(chǎn)品需要原料,原料,原料,出售一件甲產(chǎn)品可獲利7萬元,出售一件乙產(chǎn)品可獲利6萬元,現(xiàn)有原料,原料,原料,請問該如何安排生產(chǎn)可使得利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),為f(x)的導函數(shù).
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和的零點均在集合中,求f(x)的極小值;
(3)若,且f(x)的極大值為M,求證:M≤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周碑算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個全等的三角形與中間的一個小正三角形組成的一個大正三角形,設,若在大正三角形中隨機取一點,則此點取自小正三角形的概率為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com