已知橢圓的離心率為,點為橢圓上的一點,O為坐標(biāo)原.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l:y=kx+m為圓的切線,直線l交橢圓于A、B兩點,求證:∠AOB為直角.
【答案】分析:(Ⅰ)根據(jù)離心率,以及點為橢圓上的一點,適合橢圓方程,解出a、b、c,得到橢圓的方程.
(Ⅱ)y=kx+m和橢圓方程聯(lián)立,用韋達(dá)定理求得A、B兩點橫坐標(biāo)之積,縱坐標(biāo)之積,
借助直線與圓相切,圓心到直線的距離等于半徑,A、B兩點橫坐標(biāo)之積加上縱坐標(biāo)之積驗證為0即可.
解答:解:(Ⅰ)依題可得:
所以橢圓的方程為:(4分)
(Ⅱ)由得(1+4k2)x2+8kmx+4m2-4=0

點評:本小題主要考查直線、圓、橢圓、直線與圓錐曲線的位置關(guān)系等基本知識.考查推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習(xí)冊答案