設(shè)m是一個非負(fù)整數(shù),m的個位數(shù)記作G(m),如G(2014)=4,G(17)=7,G(0)=0,稱這樣的函數(shù)為尾數(shù)函數(shù).下列給出有關(guān)尾數(shù)函數(shù)的結(jié)論:
①G(a-b)=G(a)-G(b);
②?a,b,c∈N,若a-b=10c,都有G(a)=G(b);
③G(a•b•c)=G(G(a)•G(b)•G(c));
④G(32015)=9.
則正確的結(jié)論的個數(shù)為( 。
A、1B、2C、3D、4
考點:函數(shù)的值
專題:新定義
分析:根據(jù)尾數(shù)函數(shù)的定義分別進行判斷即可.
解答: 解:由題意得:
G(a-b)=a-b=|G(a)-G(b)|,故①錯誤,
G(a-b)=G(10c)=G(0)=0=G(a)-G(b),
∴G(a)=G(b),故②正確,
G[G(a)•G(b)•G(c)]=G(a•b•C),故③正確,
G(32015)=G[(10-1)1007•3]=G(7)=7,故④錯誤,
故選:B.
點評:本題考查了新定義問題,考查了求函數(shù)值問題,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)是減函數(shù),若s,t滿足不等式組
f(t)+f(s-2)≤0
f(t-s)≥0
則當(dāng)2≤s≤3時,2s+t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四邊形ABCD中,M、N分別是AD和BC的中點,則向量
MN
=(  )
A、
1
2
AB
+
CD
B、
1
2
AB
-
CD
C、
AB
+
CD
D、
AB
-
.
CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲廠以x千克/小時的速度勻速生產(chǎn)某種(生產(chǎn)條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1-
3
2
)元
(Ⅰ)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤為3000元,求x的值;
(Ⅱ)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(x-2),其中a>0,且a≠1.
(1)求函數(shù)f(x)的圖象所經(jīng)過的定點坐標(biāo);
(2)討論函數(shù)f(x)的單調(diào)性;
(3)解不等式log3(x-2)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:1≤x<3;q:x2-ax≤x-a;若¬p是¬q的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若
a2+c2-b2
2ac
<0,則△ABC的形狀是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的不等式(ax-1)(x+1)<0(a∈R)的解集為{x|-1<x<1},則a的值是(  )
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log23log34log45…logm-1m=10,求實數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案