橢圓的離心率為(   )
A.B.C.D.
D

試題分析:根據(jù)已知條件可知,橢圓的方程,那么可知焦點在x軸上,且a=4,b=,那么結(jié)合離心率公式,故選D.
點評:解決該試題的關(guān)鍵是對于橢圓中a,b,c的理解和準(zhǔn)確的表示,并熟練的根據(jù)性質(zhì)解題,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,橢圓的左焦點為,右焦點為,離心率.過的直線交橢圓于兩點,且△的周長為

(Ⅰ)求橢圓的方程.
(Ⅱ)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點.試探究:在坐標(biāo)平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長軸在軸上,且焦距為4,則等于(  )
A.4B.5C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點,離心率,且它的一個焦點與拋物線的焦點重合, 則此橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線lykx+2(k為常數(shù))過橢圓=1(ab>0)的上頂點B和左焦點F,直線l被圓x2y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經(jīng)過點;橢圓的一個焦點到長軸兩端點的距離分別為10和4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知, 是橢圓的兩個焦點,點在此橢圓上且,則的面積等于(    )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
橢圓:的左、右頂點分別、,橢圓過點且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于、兩點的任意一點軸,為垂足,延長到點,且,過點作直線軸,連結(jié)并延長交直線于點,線段的中點記為點.
①求點所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.

查看答案和解析>>

同步練習(xí)冊答案