橢圓
的離心率為( )
試題分析:根據(jù)已知條件可知,橢圓的方程
,那么可知焦點在x軸上,且a=4,b=
,那么結(jié)合離心率公式
,故選D.
點評:解決該試題的關(guān)鍵是對于橢圓中a,b,c的理解和準確的表示,并熟練的根據(jù)性質(zhì)解題,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖,橢圓
:
的左焦點為
,右焦點為
,離心率
.過
的直線交橢圓于
兩點,且△
的周長為
.
(Ⅰ)求橢圓
的方程.
(Ⅱ)設(shè)動直線
:
與橢圓
有且只有一個公共點
,且與直線
相交于點
.試探究:在坐標平面內(nèi)是否存在定點
,使得以
為直徑的圓恒過點
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓的中心在原點,離心率
,且它的一個焦點與拋物線
的焦點重合, 則此橢圓方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知直線
l:
y=
kx+2(
k為常數(shù))過橢圓
+
=1(
a>
b>0)的上頂點
B和左焦點
F,直線
l被圓
x2+
y2=4截得的弦長為
d.
(1)若
d=2
,求
k的值;
(2)若
d≥
,求橢圓離心率
e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
求滿足下列條件的橢圓方程長軸在
軸上,長軸長等于12,離心率等于
;橢圓經(jīng)過點
;橢圓的一個焦點到長軸兩端點的距離分別為10和4.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
,
是橢圓
的兩個焦點,點
在此橢圓上且
,則
的面積等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,且過點(
),
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
橢圓
:
的左、右頂點分別
、
,橢圓過點
且離心率
.
(1)求橢圓
的標準方程;
(2)過橢圓
上異于
、
兩點的任意一點
作
軸,
為垂足,延長
到點
,且
,過點
作直線
軸,連結(jié)
并延長交直線
于點
,線段
的中點記為點
.
①求點
所在曲線的方程;
②試判斷直線
與以
為直徑的圓
的位置關(guān)系, 并證明.
查看答案和解析>>