已知橢圓的長軸在軸上,且焦距為4,則等于(  )
A.4B.5C.7D.8
D  

試題分析:因?yàn),橢圓的長軸在軸上,且焦距為4,
所以,
從而,,解得,,
故選D。
點(diǎn)評(píng):簡單題,利用a,b,c的關(guān)系,建立m的方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點(diǎn)A(,0),B(,0),直線AM、BM相交于點(diǎn)M,且它們的斜率之積為.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)若直線過點(diǎn)F(1,0)且繞F旋轉(zhuǎn),與圓相交于P、Q兩點(diǎn),與軌跡C相交于R、S兩點(diǎn),若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別是橢圓的左、右頂點(diǎn),點(diǎn)在橢圓上,且直線與直線的斜率之積為
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點(diǎn)的兩點(diǎn),直線交于點(diǎn),直線交于點(diǎn).① 求證:;② 若弦過橢圓的右焦點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對(duì)稱點(diǎn),動(dòng)點(diǎn)M滿足. 問是否存在一個(gè)定點(diǎn)T,使得動(dòng)點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點(diǎn),為線段的中點(diǎn),射線交橢圓與點(diǎn),設(shè),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓具有 (   )
A.相同的長軸長B.相同的焦點(diǎn)
C.相同的離心率D.相同的頂點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案