13.已知f(x)=$\left\{\begin{array}{l}{2^{2-x}},x<2\\{log_3}(x+1),x≥2\end{array}\right.$若對任意的x∈R,af2(x)≥4f(x)-1成立,則實數(shù)a的最小值為3.

分析 設u=f(x)≥1,對任意的x∈R,af2(x)≥4f(x)-1成立,可得a≥$\frac{4}{u}$-$\frac{1}{{u}^{2}}$=-($\frac{1}{u}$-2)2+4,即可求出實數(shù)a的最小值.

解答 解:f(x)=$\left\{\begin{array}{l}{2^{2-x}},x<2\\{log_3}(x+1),x≥2\end{array}\right.$的圖象如圖所示,
設u=f(x)≥1,
對任意的x∈R,af2(x)≥4f(x)-1成立,
∴a≥$\frac{4}{u}$-$\frac{1}{{u}^{2}}$=-($\frac{1}{u}$-2)2+4,
∵0<$\frac{1}{u}$≤1,
∴-($\frac{1}{u}$-2)2+4≤3
∴a≥3,當u=1,x=2時取等號,
∴a的最小值是3.
故答案為3.

點評 本題考查恒成立問題,考查參數(shù)分離方法的運用,考查函數(shù)的最值,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=ln(2ax+1)+$\frac{x^3}{3}-{x^2}-2ax({a∈R})$.
(1)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=-$\frac{1}{2}$時,函數(shù)y=f(1-x)-$\frac{{{{({1-x})}^3}}}{3}-\frac{x}$有零點,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖所示,用五種不同的顏色分別給A,B,C,D四個區(qū)域涂色,相鄰區(qū)域必須涂不同顏色,若允許同一種顏色多次使用,則不同的涂色方法共有( 。┓N.
A.120種B.150 種C.180 種D.240 種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若經(jīng)過點A(3,a)、B(4,-4)的直線與經(jīng)過點C(-2,0)且斜率為2的直線垂直,則a的值為( 。
A.-$\frac{7}{2}$B.$\frac{15}{4}$C.10D.-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx,若(1-ax)2017=b0+b1x+b2x2+…+b2017x2017(x∈R),則$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{{{b_{2017}}}}{{{2^{2017}}}}$的值為( 。
A.0B.-1C.1D.e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點$(1,\frac{3}{2})$,離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)過點(1,0)的直線l與橢圓C交于兩點A,B,若$\overrightarrow{OA}•\overrightarrow{OB}=-2$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.對于左邊2×2列聯(lián)表,在二維條形圖中,兩個比例的值$\frac{a}{a+b}$與$\frac{c}{c+d}$相差越大,H:“x 與 Y 有關系”的可能性越大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系xOy中,已知M(-1,1),N(0,2),Q(2,0).
(1)求過M,N,Q三點的圓C1的標準方程;
(2)圓C1關于直線MN的對稱圓為C2,求圓C2的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=x2+bx-3(b∈R)的零點個數(shù)是( 。
A.0B.1C.2D.不確定

查看答案和解析>>

同步練習冊答案