【題目】某書店銷售剛剛上市的某高二數(shù)學單元測試卷,按事先擬定的價格進行5天試銷,每種單價試銷1天,得到如下數(shù)據(jù):

單價x/

18

19

20

21

22

銷量y/

61

56

50

48

45

1)求試銷天的銷量的方差和關(guān)于的回歸直線方程;

附: .

2)預(yù)計以后的銷售中,銷量與單價服從上題中的回歸直線方程,已知每冊單元測試卷的成本是10元,為了獲得最大利潤,該單元測試卷的單價應(yīng)定為多少元?

【答案】1)33.2,221.5

【解析】

1)根據(jù)公式計算可得結(jié)果;

2)獲得的利潤,再根據(jù)二次函數(shù)知識可求得結(jié)果.

解:(1)

,

關(guān)于的回歸直線方程為.

(2)獲得的利潤,即

二次函數(shù)的圖象開口向下,

∴當時, 取最大值

∴當單價定為元時,可獲得最大利潤.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3

)求數(shù)列{an}的通項公式;

)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,離心率為,是橢圓上的一個動點,且面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)直線斜率為,且與橢圓的另一個交點為,是否存在點,使得若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,底面ABC,DE分別為棱PA,PC的中點,M是線段AD的中點,N是線段BC的中點,,

求證:平面BDE

求直線MN到平面BDE的距離;

求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=是“可構(gòu)造三角形函數(shù)”,則實數(shù)t的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是橢圓C上的一點,橢圓C的離心率與雙曲線的離心率互為倒數(shù),斜率為直線l交橢圓CBD兩點,且A、B、D三點互不重合.

1)求橢圓C的方程;

2)若分別為直線AB,AD的斜率,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sna2+a15=17,S10=55.數(shù)列{bn}滿足an=log2bn

1)求數(shù)列{bn}的通項公式;

2)若數(shù)列{an+bn}的前n項和Tn滿足Tn=S32+18,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與拋物線交于,兩點,且的面積為16(為坐標原點).

(1)求的方程.

(2)直線經(jīng)過的焦點不與軸垂直,交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小郭是一位熱愛臨睡前探究數(shù)學問題的同學,在學習向量三點共線定理時,我們知道當P、AB三點共線,O為直線外一點,且時,x+y=1(如圖1)第二天,小郭提出了如下三個問題,請同學幫助小郭解答.

1)當x+y>1x+y<1時,O、P兩點的位置與AB所在直線之間存在什么關(guān)系?寫出你的結(jié)論,并說明理由

2)如圖2,射線OMAB,點P在由射線OM、線段OABA的延長線圍成的區(qū)域內(nèi)(不含邊界)運動,且,求實數(shù)x的取值范圍,并求當時,實數(shù)y的取值范圍.

3)過OAB的平行線,延長AO、BO,將平面分成如圖3所示的六個區(qū)域,且,請分別寫出點P在每個區(qū)域內(nèi)運動(不含邊界)時,實數(shù)xy應(yīng)滿足的條件.(不必證明)

查看答案和解析>>

同步練習冊答案