【題目】如圖,在三棱錐中,
底面ABC,
點(diǎn)D,E分別為棱PA,PC的中點(diǎn),M是線段AD的中點(diǎn),N是線段BC的中點(diǎn),
,
.
Ⅰ
求證:
平面BDE;
Ⅱ
求直線MN到平面BDE的距離;
Ⅲ
求二面角
的大�。�
【答案】Ⅰ
見解析;
Ⅱ
;
Ⅲ
【解析】
Ⅰ
以A為原點(diǎn),AB為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能證明
平面BDE.
Ⅱ
求出
0,
,利用向量法得直線MN到平面BDE的距離
.
Ⅲ
求出平面BDE的法向量和平面DEP的法向量,利用向量法能求出二面角
的大�。�
Ⅰ
在三棱錐
中,
底面ABC,
點(diǎn)D,E分別為棱PA,PC的中點(diǎn),
M是線段AD的中點(diǎn),N是線段BC的中點(diǎn),,
.
以A為原點(diǎn),AB為x軸,AC為y軸,AP為z軸,
建立空間直角坐標(biāo)系,
0,
,
0,
,
4,
,
2,
,
0,
,
0,
,
2,
,
2,
,
0,
,
2,
,
設(shè)平面BDE的法向量y,
,
則,取
,得
0,
,
,
平面BDE,
平面BDE.
Ⅱ
,0,
,
直線MN到平面BDE的距離:
.
Ⅲ
平面BDE的法向量
0,
,
平面DEP的法向量0,
,
設(shè)二面角的大小為
,
則.
.
二面角
的大小為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費(fèi)者購物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是
,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在
元的區(qū)間內(nèi)).
(1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自
元區(qū)間的概率;
(2)為做好五一勞動(dòng)節(jié)期間的商場(chǎng)促銷活動(dòng),策劃人員設(shè)計(jì)了兩種不同的促銷方案:
方案一:全場(chǎng)商品打8.5折;
方案二:全場(chǎng)購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在
軸上的橢圓
過點(diǎn)
,離心率為
.
(1)求橢圓的方程;
(2)直線過橢圓
的左焦點(diǎn)
,且與橢圓
交于
兩點(diǎn),若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,PA⊥平面ABCD,CD⊥AD,BC∥AD,
.
(Ⅰ)求證:CD⊥PD;
(Ⅱ)求證:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
是
與2的等差中項(xiàng).?dāng)?shù)列
中,
,點(diǎn)
在直線
上.
(1)求和
的值;
(2)求數(shù)列,
的通項(xiàng)公式;
(3)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:
(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;
(2)求頻率分布直方圖中的a,b的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸.
(1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)在一個(gè)生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時(shí)可獲得利潤(rùn)最大,最大利潤(rùn)是多少?
(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:
和圓
:
,給出下列說法:①直線
和圓
不可能相切;②當(dāng)
時(shí),直線
平分圓
的面積;③若直線
截圓
所得的弦長(zhǎng)最短,則
;④對(duì)于任意的實(shí)數(shù)
,有且只有兩個(gè)
的取值,使直線
截圓
所得的弦長(zhǎng)為
.其中正確的說法個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PA=2,PA⊥平面ABCD,E是PC的中點(diǎn),F是AB的中點(diǎn).
(1)求證:BE∥平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求BE與平面PAC所成的角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com