【題目】如圖,在三棱錐中,底面ABC,點(diǎn)D,E分別為棱PAPC的中點(diǎn),M是線段AD的中點(diǎn),N是線段BC的中點(diǎn),,

求證:平面BDE;

求直線MN到平面BDE的距離;

求二面角的大。

【答案】見解析;

【解析】

A為原點(diǎn),ABx軸,ACy軸,APz軸,建立空間直角坐標(biāo)系,利用向量法能證明平面BDE

求出0,利用向量法得直線MN到平面BDE的距離

求出平面BDE的法向量和平面DEP的法向量,利用向量法能求出二面角的大。

在三棱錐中,底面ABC點(diǎn)D,E分別為棱PA,PC的中點(diǎn),

M是線段AD的中點(diǎn),N是線段BC的中點(diǎn),

A為原點(diǎn),ABx軸,ACy軸,APz軸,

建立空間直角坐標(biāo)系,

0,,0,,4,

2,0,,0,,

2,

2,0,

2

設(shè)平面BDE的法向量y,,

,取,得0,,

,平面BDE,

平面BDE

,0,,

直線MN到平面BDE的距離:

平面BDE的法向量0,,

平面DEP的法向量0

設(shè)二面角的大小為,

二面角的大小為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上饒某購物中心在開業(yè)之后,為了解消費(fèi)者購物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在元的區(qū)間內(nèi)).

1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;

2)為做好五一勞動(dòng)節(jié)期間的商場(chǎng)促銷活動(dòng),策劃人員設(shè)計(jì)了兩種不同的促銷方案:

方案一:全場(chǎng)商品打8.5折;

方案二:全場(chǎng)購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCD,CDAD,BCAD,.

(Ⅰ)求證:CDPD

(Ⅱ)求證:BD⊥平面PAB;

(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且2的等差中項(xiàng).?dāng)?shù)列中,,點(diǎn)在直線上.

1)求的值;

2)求數(shù)列,的通項(xiàng)公式;

3)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;

2)求頻率分布直方圖中的ab的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸.

1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2)在一個(gè)生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時(shí)可獲得利潤(rùn)最大,最大利潤(rùn)是多少?

(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線和圓,給出下列說法:①直線和圓不可能相切;②當(dāng)時(shí),直線平分圓的面積;③若直線截圓所得的弦長(zhǎng)最短,則;④對(duì)于任意的實(shí)數(shù),有且只有兩個(gè)的取值,使直線截圓所得的弦長(zhǎng)為.其中正確的說法個(gè)數(shù)是(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面ABCD是菱形,∠BAD60°ABPA2,PA⊥平面ABCD,EPC的中點(diǎn),FAB的中點(diǎn).

1)求證:BE∥平面PDF;

2)求證:平面PDF⊥平面PAB;

3)求BE與平面PAC所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案