2.已知函數(shù)f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直線y=-$\frac{1}{2}$是函數(shù)f(x)的一條切線.
(Ⅰ)求a的值;
(Ⅱ)對(duì)任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.

分析 (Ⅰ)設(shè)直線y=-$\frac{1}{2}$與f(x)相切于點(diǎn)(x0,lnx0+ax02)(x0>0),求得f(x)的導(dǎo)數(shù),由已知切線方程,可得切線的斜率為0,及f(x0)=-$\frac{1}{2}$,解方程可得a的值;
(Ⅱ)由題意可得f(x)在[1,$\sqrt{e}$]的值域包含于g(x)在[1,4]的值域.運(yùn)用導(dǎo)數(shù),
求得單調(diào)性,可得值域,再由不等式解得即可.

解答 解:(Ⅰ)設(shè)直線y=-$\frac{1}{2}$與f(x)相切于點(diǎn)(x0,lnx0+ax02)(x0>0),
f′(x)=$\frac{1}{x}$+2ax=$\frac{2a{x}^{2}+1}{x}$,
依題意得$\left\{\begin{array}{l}{\frac{2a{{x}_{0}}^{2}+1}{{x}_{0}}=0}\\{ln{x}_{0}+a{{x}_{0}}^{2}=-\frac{1}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=1}\\{a=-\frac{1}{2}}\end{array}\right.$,
所以a=-$\frac{1}{2}$,經(jīng)檢驗(yàn):a=-$\frac{1}{2}$符合題意;
(Ⅱ)由(Ⅰ)得f(x)=lnx-$\frac{1}{2}$x2,
所以f′(x)=$\frac{1}{x}$-x=$\frac{1-{x}^{2}}{x}$,
當(dāng)x∈(1,$\sqrt{e}$]時(shí),f′(x)<0,所以f(x)在[1,$\sqrt{e}$]上單調(diào)遞減,
所以當(dāng)x∈[1,$\sqrt{e}$]時(shí),f(x)min=f($\sqrt{e}$)=$\frac{1}{2}$-$\frac{1}{2}$e,f(x)max=f(1)=-$\frac{1}{2}$,
$g'(x)=-\frac{1}{x^2}+1=\frac{{-1+{x^2}}}{x^2}$,
當(dāng)x∈(1,4]時(shí),g′(x)>0,所以g(x)在[1,4]上單調(diào)遞增,
所以當(dāng)x∈(1,4]時(shí),g(x)min=g(1)=2+b,$g{(x)_{max}}=g(4)=\frac{17}{4}+b$,
依題意得$[\frac{1}{2}-\frac{e}{2},-\frac{1}{2}]⊆[2+b,\frac{17}{4}+b]$,
即有$\left\{{\begin{array}{l}{2+b≤\frac{1}{2}-\frac{e}{2}}\\{\frac{17}{4}+b≥-\frac{1}{2}}\end{array}}\right.$,
解得$-\frac{19}{4}≤b≤-\frac{3}{2}-\frac{e}{2}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查任意存在性問(wèn)題的解法,注意運(yùn)用轉(zhuǎn)化思想,轉(zhuǎn)化為函數(shù)的值域包含關(guān)系,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線$l:\frac{x}{a}+\frac{y}=1({a>0,b>0})$將圓C:x2+y2-2x-4y+4=0平分,則直線l與兩坐標(biāo)軸圍成的三角形的面積的最小值為( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6},則A∪(∁UB)=( 。
A.{2,5}B.{2,5,7,8}C.{2,3,5,6,7,8}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖所示,在平行六面體ABCD-A1B1C1D1中,設(shè)$\overrightarrow{A{A_1}}=\overrightarrow a$,$\overrightarrow{AB}=\overrightarrow b$,$\overrightarrow{AD}=\overrightarrow c$,M,N,P分別是AA1,BC,C1D1的中點(diǎn),則$\overrightarrow{MP}+\overrightarrow{N{C_1}}$=( 。
A.$\frac{3}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{3}{2}\overrightarrow c$B.$\overrightarrow a+\frac{1}{2}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$\frac{3}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某校一塊空地的輪廓線如圖所示,曲線段OM是以O(shè)為頂點(diǎn),ON為對(duì)稱軸且開(kāi)口向右的拋物線的一段,已知ON=4(單位:百米),MN=4.現(xiàn)計(jì)劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABNC作為學(xué)生活動(dòng)區(qū)域,其余陰影部分進(jìn)行綠化建設(shè),其中A在曲線段OM上,C在MN上,B在ON上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段OM所在的拋物線的方程;
(Ⅱ)為降低綠化成本,試確定A的位置,使綠化建設(shè)的面積取到最小值,并求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=-3lnx+ax2+bx(a>0,b∈R),若對(duì)任意x>0都有f(x)≥f(3)成立,則( 。
A.lna>-b-1B.lna≥-b-1C.lna≤-b-1D.lna<-b-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,且AB=AD=AA1=1,∠BAA1=∠DAA1=60°,則AC1的長(zhǎng)是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)$f(x)=3sin(2x-\frac{π}{3})$的圖象為C,則如下結(jié)論中正確的是①②(寫(xiě)出所有正確結(jié)論的編號(hào)).
①圖象C關(guān)于直線$x=\frac{11π}{12}$對(duì)稱;
②圖象C關(guān)于點(diǎn)$(\frac{2π}{3},0)$對(duì)稱;
③函數(shù)f(x)在區(qū)間$(-\frac{π}{12},\frac{5π}{12})$內(nèi)是減函數(shù);
④把函數(shù)$y=3sin(x-\frac{π}{6})$的圖象上點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的一半(縱坐標(biāo)不變)可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知平面區(qū)域Ω={(x,y)|x>0,y>0,x+y<2},A={(x,y)|x<1,y<1,x+y>1},若在區(qū)間Ω內(nèi)隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案