14.已知四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,且AB=AD=AA1=1,∠BAA1=∠DAA1=60°,則AC1的長是$\sqrt{5}$.

分析 根據(jù)$\overrightarrow{{A}_{1}C}$=$\overrightarrow{{A}_{1}A}$+$\overrightarrow{AB}$+$\overrightarrow{AD}$,求模長即可.

解答 解:∵$\overrightarrow{{A}_{1}C}$=$\overrightarrow{{A}_{1}A}$+$\overrightarrow{AB}$+$\overrightarrow{AD}$,
∴|$\overrightarrow{{A}_{1}C}$|2=12+12+12+2×1×1cos60°+2×1×1cos60°+2×1×1cos90°=5,
∴|$\overrightarrow{{A}_{1}C}$|=$\sqrt{5}$,即A1C的長是$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了線段長度的求法,解題時(shí)應(yīng)利用空間向量的知識(shí)求模長,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4..從編號(hào)001,002,003,…,300的300個(gè)產(chǎn)品中采用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中編號(hào)最小的兩個(gè)編號(hào)是002,017,則樣本中最大的編號(hào)應(yīng)該是( 。
A.285B.286C.287D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某校老年教師90人、中年教師180人和青年教師160人,采用分層抽樣的方法調(diào)查教師的身體情況,在抽取的樣本中,青年教師有32人,則該樣本的老年教師人數(shù)為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直線y=-$\frac{1}{2}$是函數(shù)f(x)的一條切線.
(Ⅰ)求a的值;
(Ⅱ)對(duì)任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知p:a-4<x<a+4,q:(x-2)(x-1)<0,若¬p是¬q的充分條件,則實(shí)數(shù)a的取值范圍是[-2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.底面半徑為3的圓柱的側(cè)面積是圓柱表面積的$\frac{1}{2}$,則該圓柱的高為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若平面向量$\overrightarrow a$與$\overrightarrow$的夾角60°,$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,|則$|{\overrightarrow a-2\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.4人站成一排,其中甲乙相鄰則共有12種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在長方體ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,則$\overrightarrow{A{C}_{1}}$=( 。
A.$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$C.$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$D.-$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$

查看答案和解析>>

同步練習(xí)冊(cè)答案