求函數(shù)f(x)=
cos2x-sin2x
的定義域為
 
考點:二倍角的余弦
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:利用二倍角的余弦公式可得cos2x≥0,所以2kπ-
π
2
≤2x≤2kπ+
π
2
,k∈Z,從而得到x的范圍.
解答: 解:由題意可得:cos2x-sin2x≥0,
由二倍角公式可得cos2x≥0,
所以2kπ-
π
2
≤2x≤2kπ+
π
2
,k∈Z.
∴kπ-
π
4
≤x≤kπ+
π
4
,k∈Z,
故答案為:[kπ-
π
4
,kπ+
π
4
]k∈Z.
點評:本題主要考察了二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在正方形ABCD-A1B1C1D1中,E、F分別是BB1、D1B1的中點.求證:EF⊥平面B1AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β都是銳角,且α+β的終邊與-280°角的終邊相同,α-β的終邊與670°角的終邊相同,求∠α、∠β的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+bx2+cx+d(x∈R)已知F(x)=f(x)-f′(x)是奇函數(shù),且F(1)=-11
(1)求b、c、d的值;
(2)求F(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個球與正六棱柱的各個面相切,則正六棱柱的側(cè)面積與底面積的比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由于霧霾日趨嚴重,政府號召市民乘公交出行.但公交車的數(shù)量太多會造成資源的浪費,太少又難以滿足乘客需求.為此,某市公交公司在某站臺的60名候車乘客中進行隨機抽樣,共抽取10人進行調(diào)查反饋,所選乘客情況如下表所示:
組別候車時間(單位:min)人數(shù)
[0,5)1
[5,10)5
[10,15)3
[15,20)1
(Ⅰ)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(Ⅱ)現(xiàn)從這10人中隨機取3人,求至少有一人來自第二組的概率;
(Ⅲ)現(xiàn)從這10人中隨機抽取3人進行問卷調(diào)查,設(shè)這3個人共來自X個組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(Ⅰ) 當(dāng)BE=1,是否在折疊后的AD上存在一點P,使得CP∥平面ABEF?若存在,求出P點位置,若不存在,說明理由;
(Ⅱ) 設(shè)BE=x,問當(dāng)x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

原點和點(1,1)在直線x+y=a兩側(cè),則a的取值范圍是( 。
A、0<a<2
B、a<0或a>2
C、a=0或a=2
D、0≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln
x+1
x-1

(Ⅰ)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性,并證明;
(Ⅱ)對于區(qū)間[2,4]上的任意一個x,不等式f(x)≥ex+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案