12.記復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z$,若$\overline z•({1-i})=2i$(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出z的坐標得答案.

解答 解:由$\overline z•({1-i})=2i$,得$\overline{z}=\frac{2i}{1-i}=\frac{2i(1+i)}{(1-i)(1+i)}=i(1+i)=-1+i$.
∴$z=\overline{\overline{z}}=-1-i$,
∴復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點的坐標為(-1,-1),位于第三象限.
故選:C.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.在四邊形ABCD中,點E在BC上,∠BAD=$\frac{2π}{3}$,AD:AC:CD=1:2:$\sqrt{3}$.
(1)求∠BAC;
(2)若AB=1,BE=3EC,AE平分∠BAC,求AE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.網(wǎng)購是當前民眾購物的新方式,某公司為改進營銷方式,隨機調(diào)查了100名市民,統(tǒng)計其周平均網(wǎng)購的次數(shù),并整理得到如下的頻數(shù)直方圖.這10名市民中,年齡不超過40歲的有65人.將所抽樣中周平均網(wǎng)購次數(shù)不小于4次的市民稱為網(wǎng)購迷,且已知其中有5名市民的年齡超過40歲.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯的概率不超過0.10的前提條件下認為網(wǎng)購迷與年齡不超過40歲有關(guān)?
(2)現(xiàn)將所抽取樣本中周平均網(wǎng)購次數(shù)不小于5次的市民稱為超級網(wǎng)購迷,且已知超級網(wǎng)購迷中有2名年齡超過40歲,若從超級網(wǎng)購迷中任意挑選2名,求至少有1名市民年齡超過40歲的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;
  網(wǎng)購迷 非網(wǎng)購迷 合計
 年齡不超過40歲   
 年齡超過40歲  
 合計   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,輸出n的值為( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知y=f(x)是二次函數(shù),方程f(0)=1,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函數(shù)y=f(x)與y=-x2-4x+1所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知定義在R上偶函數(shù)f(x)滿足f(x+2)•f(x)=4,且f(x)>0,則f(2017)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{k{x}^{2}+2x-1,x∈(0,1]}\\{kx+1,x∈(1,+∞)}\end{array}\right.$有兩個不相等的零點x1,x2,則$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的最大值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.六個人站成一排照相,要求甲、乙、丙3人有且只有兩人相鄰,則不同的站法種數(shù)有(  )
A.18B.108C.216D.432

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知矩形ADEF和菱形ABCD所在平面互相垂直,如圖,其中AF=1,AD=2,∠ADC=$\frac{π}{3}$,點N時線段AD的中點.
(Ⅰ)試問在線段BE上是否存在點M,使得直線AF∥平面MNC?若存在,請證明AF∥平面MNC,并求出$\frac{BM}{ME}$的值,若不存在,請說明理由;
(Ⅱ)求二面角N-CE-D的正弦值.

查看答案和解析>>

同步練習冊答案