【題目】已知函數(shù).
(1)解關(guān)于的不等式;
(2)若不等式對(duì)任意恒成立,求的取值范圍.
【答案】(1)(2)
【解析】
(1)根據(jù)絕對(duì)值不等式的解法,求得不等式的解集.
(2)解法一:利用分離參數(shù)法,結(jié)合絕對(duì)值三角不等式,求得的取值范圍.解法二:利用零點(diǎn)分段法去絕對(duì)值進(jìn)行分類討論,由此求得的取值范圍.解法三:利用分析法,結(jié)合絕對(duì)值不等式化簡(jiǎn),由此求得的取值范圍.
(1)由題;,所以
故或,即或.
所以原不等式的解集為.
(2)解法1:分離參數(shù)
由題對(duì)任意均成立,故
①當(dāng)時(shí),不等式恒成立;
②當(dāng)時(shí),對(duì)任意非零實(shí)數(shù)恒成立,而,故
綜上:
解法2:分類討論
由題恒成立;
①當(dāng)時(shí),不等式恒成立;
②當(dāng)時(shí),;
③當(dāng)時(shí),,故;
④當(dāng)時(shí),,故,故,即;
⑤當(dāng)時(shí),,故恒成立.
即:線性函數(shù)在時(shí)恒小于6,故,解得:
綜上:
解法三:
由題對(duì)任意均成立,故
即為
而
轉(zhuǎn)化為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線的極坐標(biāo)方程為.
(1)將與的方程化為極坐標(biāo)方程;
(2)若曲線與的公共點(diǎn)都在上,,求r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.
(1)若軸,且滿足直線與圓相切,求圓的方程;
(2)若圓的半徑為,點(diǎn)滿足,求直線被圓截得弦長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生自主創(chuàng)業(yè),經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出該產(chǎn)品獲利潤800元,未售出的產(chǎn)品,每虧損200元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.該大學(xué)生為下一個(gè)銷售季度購進(jìn)了該農(nóng)產(chǎn)品.以(單位:)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤不少于94000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若,則取,且的概率等于需求量落入的頻率),求的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在直三棱柱中,平面側(cè)面A1ABB1.
(Ⅰ)求證:;
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ,試判斷θ與φ的大小關(guān)系,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三共有1000位學(xué)生,為了分析某次的數(shù)學(xué)考試成績,采取隨機(jī)抽樣的方法抽取了200位高三學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析得到如圖所示頻率分布直方圖:
(1)計(jì)算這些學(xué)生成績的平均值及樣本方差(同組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);
(2)由頻率分布直方圖認(rèn)為,這次成績X近似服從正態(tài)分布,其中μ近似為樣本平均數(shù),近似為樣本方差.
(i)求;
(ii)從高三學(xué)生中抽取10位學(xué)生進(jìn)行面批,記表示這10位學(xué)生成績?cè)?/span>的人數(shù),利用(i)的結(jié)果,求數(shù)學(xué)期望.
附:;
若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面⊥平面,,,DE AC,AD=BD=1.
(Ⅰ)求AB的長;
(Ⅱ)已知,求點(diǎn)E到平面BCD的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價(jià)為200元,低于100箱按原價(jià)銷售;不低于100箱通過雙方議價(jià),買方能以優(yōu)惠成交的概率為0.6,以優(yōu)惠成交的概率為0.4.
(1)甲、乙兩單位都要在該廠購買150箱這種零件,兩單位各自達(dá)成的成交價(jià)相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;
(2)某單位需要這種零件650箱,求購買總價(jià)的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com