【題目】如圖,在多面體中,平面⊥平面,,,DE AC,AD=BD=1.
(Ⅰ)求AB的長;
(Ⅱ)已知,求點E到平面BCD的距離的最大值.
【答案】(1);(2).
【解析】分析:(Ⅰ) 先由面面垂直的性質(zhì)可得平面,平面,可得,再證明平面,于是得,由勾股定理可得結(jié)果;(Ⅱ)過作直線,以點為坐標原點,直線分別為軸,建立空間直角坐標系,如圖所示. 記,求出平面的一個法向量,利用點到平面的距離,結(jié)合,可得點到平面的距離的最大值.
詳解:(Ⅰ)∵平面ABD⊥平面ABC,且交線為AB,而AC⊥AB,∴AC⊥平面ABD.
又∵DE∥AC,∴DE⊥平面ABD,從而DE⊥BD.
注意到BD⊥AE,且DE∩AE=E,∴BD⊥平面ADE,于是,BD⊥AD.
而AD=BD=1,∴.
(Ⅱ)∵AD=BD,取AB的中點為O,∴DO⊥AB.
又∵平面ABD⊥平面ABC,∴DO⊥平面ABC.
過O作直線OY∥AC,以點O為坐標原點,直線OB,OY,OD分別為軸,建立空間直角坐標系,如圖所示.
記,則,,
,,,.
令平面BCD的一個法向量為.
由得.令,得.
又∵,∴點E到平面BCD的距離.
∵,∴當時,取得最大值,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子和中均裝有若干個大小相同的紅球和白球,從中摸出一個紅球的概率是,從中摸出一個紅球的概率為.
(1)從中有放回地摸球,每次摸出1個,有3次摸到紅球即停止,求恰好摸5次停止的概率.
(2)若、兩個袋子中的球數(shù)之比為,將、中的球裝在一起后,從中摸出一個紅球的概率是,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新個稅法于2019年1月1日進行實施.為了調(diào)查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機抽取了1000名員工進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.
(1)求的值并估計被調(diào)查的員工的滿意程度的中位數(shù);(計算結(jié)果保留兩位小數(shù))
(2)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)的圖象在處的切線為,當實數(shù)變化時,求證:直線經(jīng)過定點;
(Ⅱ)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個極值點(為自然對數(shù)的底數(shù)).
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),數(shù)列的前項和為,點在圖象上,且的最小值為.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足,記數(shù)列的前項和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,,求的值;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間;
(3)若對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻.為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”他們的調(diào)查結(jié)果如下:
(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關(guān)?
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(ⅰ)求抽取的文科生和理科生的人數(shù);
(ⅱ)從10人的樣本中隨機抽取兩人,求兩人都是文科生的概率.
參考數(shù)據(jù):
,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com