A. | $\frac{\sqrt{2}-1}{2}$ | B. | -$\frac{\sqrt{2}+1}{2}$ | C. | -1 | D. | $\frac{1-\sqrt{2}}{2}$ |
分析 將解析式化簡為關于cosx的二次函數(shù)形式,然后結合二次函數(shù)閉區(qū)間上的最值求法解答
解答 解:因為f(x)=sin2x+cosx=1-cos2x+cosx,
設t=cosx,因為x∈[$\frac{π}{4}$,$\frac{3π}{4}$],所以t∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],
所以函數(shù)y=-t2+t+1=-(t-$\frac{1}{2}$)2+$\frac{5}{4}$在[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]先增后減,
且它的最小值為t=-$\frac{\sqrt{2}}{2}$時的函數(shù)值,是ymin=$\frac{1-\sqrt{2}}{2}$;
即f(x)的最小值為$\frac{1-\sqrt{2}}{2}$.
故選:D.
點評 本題考查了三角函數(shù)與二次函數(shù)相結合的函數(shù)最值的求法;本題關鍵是利用換元將解析式轉化為二次函數(shù)的解析式,注意新元的范圍.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | α<∠A′CA | B. | α>∠A′CA | C. | α<∠A′CD | D. | α>∠A′CD |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,1) | B. | [0,1) | C. | (1,2] | D. | (-2,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com