如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。

(1)求AB和OC的長(zhǎng);
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過(guò)點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。

(1),,(2)(3)

解析試題分析:解:(1)令y=0,即,
整理得
解得:,,
∴ A(—3,0),B(6,0)
令x = 0,得y = —9,
∴ 點(diǎn)C(0,—9)
,,      3分
(2),
∵ l∥BC,
∴ △ADE∽△ACB,
,即
,其中。          6分
(3)

∴ 當(dāng)時(shí),S△CDE取得最大值,且最大值是。
這時(shí)點(diǎn)E(,0),
,,
作EF⊥BC,垂足為F,
∵∠EBF=∠CBO,∠EFB=∠COB,
∴△EFB∽△COB,
,即

∴ ⊙E的面積為:。
答:以點(diǎn)E為圓心,與BC相切的圓的面積為。     11分
考點(diǎn):二次函數(shù)的性質(zhì)、相似三角形的性質(zhì)
點(diǎn)評(píng):該題主要考查了二次函數(shù)的性質(zhì)、相似三角形的性質(zhì)、圖形面積的求法等綜合知識(shí).在解題時(shí),要多留意圖形之間的關(guān)系,有些時(shí)候?qū)⑺髥?wèn)題進(jìn)行時(shí)候轉(zhuǎn)化可以大大的降低解題的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直線與橢圓交于,兩點(diǎn),已知
,,若且橢圓的離心率,又橢圓經(jīng)過(guò)點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過(guò)橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(Ⅰ)判斷曲線的切線能否與曲線相切?并說(shuō)明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)拋物線方程為,為直線上任意一點(diǎn),過(guò)引拋物線的切線,切點(diǎn)分別為

(1)求證:三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)點(diǎn)的坐標(biāo)為時(shí),.求此時(shí)拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn),最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓左、右焦點(diǎn)分別為F1、F2,點(diǎn),點(diǎn)F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角互補(bǔ),求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),離心率為,P為左頂點(diǎn)。
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),若△PAB的面積為,求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓M的中心為坐標(biāo)原點(diǎn),且焦點(diǎn)在x軸上,若M的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率,過(guò)M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個(gè)動(dòng)點(diǎn),且,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案