2.($\frac{1}{{\sqrt{x}}}$+x)2n(n∈N*)的展開式中,只有第5項(xiàng)的系數(shù)最大,則其x2項(xiàng)的系數(shù)為70.

分析 由題意求得n=4,在二項(xiàng)式展開式的通項(xiàng)公式中,再令x的冪指數(shù)等于2,求得r的值,即可求得展開式中的其x2項(xiàng)的系數(shù).

解答 解:由題意,2n=8,n=4,
則${(\frac{1}{{\sqrt{x}}}+x)^{2n}}$展開式的通項(xiàng)為${T_{r+1}}=C_8^r{x^{\frac{3}{2}r-4}}$,
令$\frac{3}{2}r-4=2$,得r=4,
故${T_5}=C_8^4=70$.
故答案為:70.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分別為AB,CB的中點(diǎn),M為底面△OBF的重心.
(Ⅰ)求證:PM∥平面AFC;
(Ⅱ)求直線AC與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列{an},a1=1,an+1=2an+2,則an=3×2n-1-2,Sn=3×2n-2n-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若A(a,b),B(c,d)是f(x)=lnx圖象上不同兩點(diǎn),則下列各點(diǎn)一定在f(x)圖象上的是( 。
A.(a+c,b+d)B.(a+c,bd)C.(ac,b+d)D.(ac,bd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若點(diǎn)A,B在圓O:x2+y2=4上,弦AB的中點(diǎn)為D(1,1),則直線AB的方程是( 。
A.x-y=0B.x+y=0C.x-y-2=0D.x+y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知cosα=$\frac{2}{5}$,α∈($\frac{3π}{2}$,2π),求cos2α,cos$\frac{α}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)到漸近線的距離等于焦距的$\frac{{\sqrt{3}}}{4}$倍,則雙曲線的離心率為2,如果雙曲線上存在一點(diǎn)P到雙曲線的左右焦點(diǎn)的距離之差為4,則雙曲線的虛軸長(zhǎng)為$4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.復(fù)數(shù)z=$\frac{1+ai}{i}$(a∈R)的虛部為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知a為非零實(shí)數(shù),則a${\;}^{-\frac{2}{3}}$=(  )
A.a${\;}^{\frac{2}{3}}$B.$\sqrt{{a}^{3}}$C.$\frac{1}{\sqrt{{a}^{3}}}$D.$\frac{1}{\root{3}{{a}^{2}}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案