5.求適合下列條件的直線的方程:
(1)過點(-1,2)且平行于直線y=4;
(2)過點(-1,0)且垂直于直線2x+3y-1=0;
(3)過點(-3,2)且平行于過兩點(2,1),(-3,4)的直線.

分析 (1)過點(-1,2)且平行于直線y=4為:y=2.
(2)設(shè)垂直于直線2x+3y-1=0的直線方程為3x-2y+m=0,把點(-1,0)代入即可得出.
(3)利用斜率計算公式可得:過兩點(2,1),(-3,4)的直線的斜率k,再利用相互平行的直線斜率之間的關(guān)系、點斜式即可得出.

解答 解:(1)過點(-1,2)且平行于直線y=4為:y=2.
(2)設(shè)垂直于直線2x+3y-1=0的直線方程為3x-2y+m=0,把點(-1,0)代入可得:-3+0+m=0,解得m=3.
∴要求的直線方程為:3x-2y+3=0.
(3)過兩點(2,1),(-3,4)的直線的斜率k=$\frac{1-4}{2-(-3)}$=-$\frac{3}{5}$.
∴要求的直線方程為:y-2=-$\frac{3}{5}$(x+3),即3x+5y-1=0.

點評 本題考查了相互平行與相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知復(fù)數(shù)z滿足(2-3i)z=3+2i(i是虛數(shù)單位),則z的模為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y≤1\end{array}\right.$,z=2x+y的最大值為m,若正數(shù)a,b滿足a+b=m,則$\frac{1}{a}+\frac{1}$的最小值為( 。
A.3B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求使cosx=2a-3成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.記數(shù)列{2n}的前n項和為an,數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Sn,數(shù)列{bn}的通項公式為bn=n-11,則bnSn的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=cos(x+$\frac{2π}{5}$)+2sin$\frac{π}{5}$sin(x+$\frac{π}{5}$)的最大值是(  )
A.1B.sin$\frac{π}{5}$C.2sin$\frac{π}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,已知tanA=$\frac{cosB-cosC}{sinC-sinB}$,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:z=1+$\sqrt{3}$i,求X=$\frac{{z}^{2}-(1-\sqrt{3}i)+6}{|z|-z}$的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.為了增強環(huán)保意識,某校從男生中隨機制取了60人,從女生中隨機制取了50人參加環(huán)保知識測試,統(tǒng)計數(shù)據(jù)如下表所示:
優(yōu)秀非優(yōu)秀總計
男生402060
女生203050
總計6050110
附:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
則有( 。┑陌盐照J(rèn)為環(huán)保知識是否優(yōu)秀與性別有關(guān).
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

同步練習(xí)冊答案