A. | $-\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
分析 由題意利用正弦函數(shù)的單調(diào)性和圖象的對稱性,求得f(x)的解析式,可得f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對稱,根據(jù)$\frac{{x}_{1}{+x}_{2}}{2}$=$\frac{π}{6}$,可得 x1+x2=$\frac{π}{3}$,由此求得f(x1+x2)的值.
解答 解:函數(shù)f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)在區(qū)間$[{\frac{π}{6},\frac{π}{2}}]$上單調(diào)遞增,且函數(shù)值從-2增大到0,
∴ω•$\frac{π}{6}$+φ=2kπ-$\frac{π}{2}$,ω•$\frac{π}{2}$+φ=2kπ,k∈Z,∴ω=$\frac{3}{2}$,∴φ=-$\frac{3π}{4}$,f(x)=2sin($\frac{3}{2}$x-$\frac{3π}{4}$),且f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對稱.
若${x_1}_{\;}、{x_2}∈[{-\frac{π}{6},\frac{π}{2}}]$,且f(x1)=f(x2),則$\frac{{x}_{1}{+x}_{2}}{2}$=$\frac{π}{6}$,∴x1+x2=$\frac{π}{3}$,
則f(x1+x2)=f($\frac{π}{3}$)=2sin($\frac{3}{2}$•$\frac{π}{3}$-$\frac{3π}{4}$)=2sin(-$\frac{π}{4}$)=-$\sqrt{2}$,
故選:A.
點評 本題主要考查正弦函數(shù)的單調(diào)性和圖象的對稱性,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<a≤2 | B. | -1<a≤1 | C. | -3<a≤3 | D. | a<-$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{5}$個單位 | B. | 向右平移$\frac{π}{5}$個單位 | ||
C. | 向左平移$\frac{π}{10}$個單位 | D. | 向右平移$\frac{π}{10}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2) | B. | [-1,0] | C. | [-1,2) | D. | (-∞,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com