18.已知全集U=R,集合A={x|x2+x>0},集合B=$\{y|y=\frac{2}{{{2^x}+1}},x∈R\}$,則(∁UA)∪B=(  )
A.[0,2)B.[-1,0]C.[-1,2)D.(-∞,2)

分析 運(yùn)用二次不等式的解法,求得A,運(yùn)用指數(shù)函數(shù)的值域和不等式的性質(zhì),化簡(jiǎn)集合B,再由補(bǔ)集和并集的定義,即可得到所求集合.

解答 解:集合A={x|x2+x>0}
={x|x>0或x<-1},
集合B=$\{y|y=\frac{2}{{{2^x}+1}},x∈R\}$
={y|0<y<2},
則(∁UA)∪B={x|-1≤x≤0}∪{y|0<y<2}
=[-1,0]∪(0,2)=[-1,2).
故選:C.

點(diǎn)評(píng) 本題考查集合的并集和補(bǔ)集的運(yùn)算,同時(shí)考查二次不等式的解法和指數(shù)函數(shù)的值域的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)在區(qū)間$[{\frac{π}{6},\frac{π}{2}}]$上單調(diào)遞增,且函數(shù)值從-2增大到0.若${x_1}_{\;}、{x_2}∈[{-\frac{π}{6},\frac{π}{2}}]$,且f(x1)=f(x2),則f(x1+x2)=( 。
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂平面內(nèi),已知飛機(jī)的高度為海拔15000m,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?5°,經(jīng)過108s后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?340m.(取$\sqrt{3}$=1.732)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.?dāng)?shù)學(xué)老師從6道習(xí)題中隨機(jī)抽3道讓同學(xué)檢測(cè),規(guī)定至少要解答正確2道題才能及格.某同學(xué)只能求解其中的4道題,則他能及格的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線l與橢圓C:$\frac{{x}^{2}}{8}$$+\frac{{y}^{2}}{4}$=1相交于A,B兩點(diǎn),若直線l的方程為x-2y+1=0,則線段AB的中點(diǎn)坐標(biāo)是( 。
A.(-$\frac{1}{3}$,-$\frac{1}{2}$)B.($\frac{1}{3}$,-$\frac{1}{3}$)C.(1,1)D.(-$\frac{1}{3}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-2,則$\frac{a_8}{a_6}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.電商中“貓狗大戰(zhàn)”在節(jié)日期間的競(jìng)爭(zhēng)異常激烈,在剛過去的618全民年中購物節(jié)中,某東當(dāng)日交易額達(dá)1195億元,現(xiàn)從該電商“剁手黨”中隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成了6組,得到如下所示的頻率直方圖.
(1)求顧客年齡的眾數(shù),中位數(shù),平均數(shù)(每一組數(shù)據(jù)用中點(diǎn)做代表);
(2)用樣本數(shù)據(jù)的頻率估計(jì)總體分布中的概率,則從全部顧客中任取3人,記隨機(jī)變量X為顧客中年齡小于25歲的人數(shù),求隨機(jī)變量X的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,最小正周期為π且為奇函數(shù)的是(  )
A.y=sin$\frac{x}{2}$B.y=cos$\frac{x}{2}$C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了得到函數(shù)y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的圖象,只需要把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
B.向右平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
C.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)
D.向右平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)

查看答案和解析>>

同步練習(xí)冊(cè)答案