14.若三角形ABC為鈍角三角形,三邊為2,3,x,則x的取值范圍是( 。
A.(1,$\sqrt{5}$)B.(1,$\sqrt{5}$)∪($\sqrt{13}$,5)C.($\sqrt{5}$,$\sqrt{13}$)D.($\sqrt{13}$,5)

分析 首先由三角形的三邊關(guān)系可得x的范圍,再分別由三個(gè)角為鈍角和余弦定理可得x的范圍,綜合可得.

解答 解:不妨設(shè)A、B、C所對(duì)的邊分別為2,3,x,顯然x為正數(shù),
由三角形的三邊關(guān)系可得$\left\{\begin{array}{l}{2+3>x}\\{2+x>3}\\{x+3>2}\end{array}\right.$,解得1<x<5
當(dāng)A為鈍角時(shí),可得cosA=$\frac{{3}^{2}+{x}^{2}-{2}^{2}}{2•3•x}$<0,解得x為任意實(shí)數(shù);
當(dāng)B為鈍角時(shí),可得cosB=$\frac{{2}^{2}+{x}^{2}-{3}^{2}}{2•2•x}$<0,解得0<x<$\sqrt{5}$;
當(dāng)C為鈍角時(shí),可得cosC=$\frac{{2}^{2}+{3}^{2}-{x}^{2}}{2•2•3}$<0,解得x>$\sqrt{13}$;
綜合可得1<x<$\sqrt{5}$或$\sqrt{13}$<x<5
故選:B.

點(diǎn)評(píng) 本題考查余弦定理解三角形,涉及分類(lèi)討論和不等式的解集,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=$\sqrt{tanx+1}$+lg(1-tanx)的定義域?yàn)閇kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若不等式|2x+a|<b的解集為{x|1<x<4},則ab等于-15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.要得到y(tǒng)=cos2x的圖象,只需要將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象( 。
A.向右平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向左平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(sinα,$\frac{3}{2}$),$\overrightarrow$=(cosα,-1),且$\overrightarrow{a}$∥$\overrightarrow$
(1)若α為第二象限角,求$\frac{sin(-α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$的值;
(2)求cos2α-sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若集合A={x|-1<x<2},B={x|2x2-5x-3>0},則A∩B=( 。
A.{x|-1<x<-$\frac{1}{2}$,或2<x<3}B.{x|2<x<3}
C.{x|-$\frac{1}{2}$<x<2}D.{x|-1<x<-$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.自2016年1月1日起,我國(guó)全面二孩政策正式實(shí)施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個(gè)”“生二孩能休多久產(chǎn)假”等成為千千萬(wàn)萬(wàn)個(gè)家庭在生育決策上避不開(kāi)的話題.為了解針對(duì)產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機(jī)構(gòu)隨機(jī)抽取了200戶有生育二胎能力的適齡家庭進(jìn)行問(wèn)卷調(diào)查,得到如下數(shù)據(jù):
產(chǎn)假安排(單位:周)1415161718
有生育意愿家庭數(shù)48162026
(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對(duì)產(chǎn)假為14周與16周,估計(jì)某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機(jī)抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.
①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用ξ表示兩種方案休假周數(shù)和.求隨機(jī)變量ξ的分布及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,△ABC三個(gè)頂點(diǎn)都在拋物線上,且△ABC的重心為拋物線的焦點(diǎn),若BC邊所在的直線方程為4x+y-20=0,則拋物線方程為( 。
A.y2=16xB.y2=8xC.y2=-16xD.y2=-8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x+1|-2|x|.
(1)求不等式f(x)≤-6的解集;
(2)若存在實(shí)數(shù)x滿足f(x)=log2a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案