【題目】在平面直角坐標系中,,設的內切圓分別與邊相切于點,已知,記動點的軌跡為曲線.

(1)求曲線的方程;

(2)的直線與軸正半軸交于點,與曲線E交于點軸,過的另一直線與曲線交于兩點,若,求直線的方程.

【答案】12.

【解析】

1)由內切圓的性質可知,,,轉化,利用橢圓定義求橢圓方程;

2)先求點的坐標,判斷,再由,求得,所以,求得,再分斜率存在和斜率不存在兩種情況,當斜率存在時,設直線與橢圓方程聯(lián)立,得到根與系數(shù)的關系,并且根據(jù)求斜率.

:(1)由內切圓的性質可知,,,

.

所以曲線是以為焦點,長軸長為的橢圓(除去與軸的交點).

設曲線,

所以曲線的方程為.

(2)因為軸,所以,設,

所以,所以,則

因為,所以,

所以

所以,所以

,所以

①直線斜率不存在時, 方程為

此時,不符合條件舍去.

②直線的斜率存在時,設直線的方程為.

聯(lián)立,得

所以,

代入得

,所以.

所以,

所以直線的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為,曲線的參數(shù)方程為:為參數(shù)),為直線上距離為的兩動點,點為曲線上的動點且不在直線上.

1)求曲線的普通方程及直線的直角坐標方程.

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是國家統(tǒng)計局給出的2014年至2018年我國城鄉(xiāng)就業(yè)人員數(shù)量的統(tǒng)計圖表,結合這張圖表,以下說法錯誤的是(

A.2017年就業(yè)人員數(shù)量是最多的

B.2017年至2018年就業(yè)人員數(shù)量呈遞減狀態(tài)

C.2016年至2017年就業(yè)人員數(shù)量與前兩年比較,增加速度減緩

D.2018年就業(yè)人員數(shù)量比2014年就業(yè)人員數(shù)量增長超過400萬人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABCABC,∠BAC90°,ABACλAA,點MN分別為ABBC的中點.

1)證明:MN∥平面AACC

2)若二面角AMNC為直二面角,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的一個焦點與拋物線的焦點重合,且離心率為.

1)求橢圓的標準方程;

2)過焦點的直線與拋物線交于,兩點,與橢圓交于,兩點,滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC中,三邊長a,b,c滿足a2a2b2c=0,a+2b2c+3=0,則這個三角形最大角的大小為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學家劉徽用圓內接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,2448,192,,逐個算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候的近似值是3.141024,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產(chǎn)生了巨大影響.按照上面“割圓術”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,直線l與橢圓C交于PQ兩點,且點M滿足.

1)若點,求直線的方程;

2)若直線l過點且不與x軸重合,過點M作垂直于l的直線y軸交于點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)設的反函數(shù).時,解不等式;

2)若關于的方程的解集中恰好有一個元素,求實數(shù)的值;

3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

查看答案和解析>>

同步練習冊答案