5.“點A的坐標(biāo)是(kπ,0),k∈Z”是“y=tanx關(guān)于點A對稱”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義分別判斷其充分性和必要性即可.

解答 解:將A(kπ,0)代入y=tanx,得:
y=tankπ=0,是充分條件,
若函數(shù)y=tanx的圖象關(guān)于點A對稱,
則A($\frac{kπ}{2}$,0),k∈Z,
而{x|x=kπ,k∈Z}?{x|x=$\frac{kπ}{2}$,k∈Z},
不是必要條件,
故選:B.

點評 本題考查了充分必要條件,考查三角函數(shù)問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.與角-$\frac{π}{3}$終邊相同的角是( 。
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.$\frac{{{{({1-i})}^2}}}{{{{({1+i})}^3}}}$=(  )
A.$\frac{i+1}{2}$B.$\frac{i-1}{2}$C.$\frac{1-i}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.變量x、y滿足條件$\left\{\begin{array}{l}{x-4y+2≤0}\\{x+y+2≥0}\\{3x-2y-4≤0}\end{array}\right.$,則$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$+$\sqrt{{(x+2)}^{2}{+(y+1)}^{2}}$的最小值為(  )
A.2$\sqrt{5}$+2B.$\sqrt{17}$+$\sqrt{5}$C.$\sqrt{13}$+1D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1為曲線y=f(x)=x2+x-2在點(1,0)處的切線,l2為該曲線的另外一條切線,且l1⊥l2,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.集合A={x|x=2n,n∈Z},B={1,2,3},則A∩B的子集的個數(shù)為(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,角θ的終邊經(jīng)過點P(-2,t),且sinθ+cosθ=$\frac{\sqrt{5}}{5}$,則實數(shù)t的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個命題中:
①函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)y=tan(2x+1)的最小正周期是π;
③函數(shù)y=tanx的圖象關(guān)于點($\frac{3π}{2}$,0)成中心對稱;
④函數(shù)y=tanx的圖象關(guān)于點(π,0)成中心對稱.
其中正確命題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若(1-x)3(x2-2x+3)3=a0+a1x+a2x2+…+a9x9,則|a0|+|a1|+|a2|+…+|a9|的值等于1728.

查看答案和解析>>

同步練習(xí)冊答案