13.已知$x∈(-\frac{π}{2},0),tanx=-2$,則sin(x+π)=( 。
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 根據(jù)x的取值范圍,tanx的值易得sinx,所以結(jié)合誘導公式求得sin(x+π)的值即可.

解答 解:因為$x∈(-\frac{π}{2},0),tanx=-2$,
所以sinx=$-\sqrt{\frac{ta{n}^{2}x}{ta{n}^{2}x+1}}$=-$\frac{2\sqrt{5}}{5}$,
∴sin(x+π)=-sinx=$\frac{2\sqrt{5}}{5}$.
故選:D.

點評 本題主要考查同角三角函數(shù)關系式和誘導公式的應用,屬于基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知數(shù)列{an}滿足an+1=$\frac{2{a}_{n}+3}{{a}_{n}+4}$(n∈N*),設bn=$\frac{{a}_{n}-λ}{{a}_{n}-μ}$(n∈N*,λ,μ為均不等于2的且互不相等的常數(shù)),若數(shù)列{bn}為等比數(shù)列,則λ•μ的值為-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(2,+∞)上單調(diào)遞減的是( 。
A.$y=\frac{1}{x}$B.y=lg|x|C.y=-x2+1D.y=e-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜邊$AB=\sqrt{2}$,側(cè)棱AA1=2,點D為AB的中點,點E在線段AA1上,AE=λAA1(λ為實數(shù)).
(1)求證:不論λ取何值時,恒有CD⊥B1E;
(2)當$λ=\frac{1}{3}$時,記四面體C1-BEC的體積為V1,四面體D-BEC的體積為V2,求V1:V2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.復數(shù)$\frac{2}{1+i}$對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知復數(shù)z滿足$\frac{z-1}{z+1}=i$,則復數(shù)z在復平面內(nèi)對應點在(  )
A.第一、二象限B.第三、四象限C.實軸D.虛軸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖:已知△ABC,AC=15,M在AB邊上,且CM=3$\sqrt{13}$,cos∠ACM=$\frac{{3\sqrt{13}}}{13}$,sinα=$\frac{{2\sqrt{5}}}{5}$,(α為銳角),則△ABC的面積為225.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)y=x+cosx,有以下命題:
①f(x)的定義域是(2kπ,2kπ+2π);
②f(x)的值域是R;
③f(x)是奇函數(shù);
④f(x)的圖象與直線y=x的交點中有一個點的橫坐標為$\frac{π}{2}$,
其中推斷正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設h=min{a,$\frac{2b}{{a}^{2}+^{2}}$},其中a,b 均為正實數(shù),證明:h≤1.

查看答案和解析>>

同步練習冊答案