【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點,為線段上的動點.
(1)平面與平面是否互相垂直?如果垂直,請證明;如果不垂直,請說明理由.
(2)若,為線段的三等分點,求多面體的體積.
【答案】(1)互相垂直,證明見解析(2)或.
【解析】
(1)證明平面中的即可.
(2)利用多面體的體積為,分為線段的兩個不同的三等分點進行求解即可.
解法一:(1)平面與平面互相垂直,
理由如下:
因為底面,平面,
所以.
因為為正方形,所以
又,且平面,
所以平面.
因為平面,所以
因為,為線段的中點,所以,
又,且平面,
所以平面,
因為平面,所以平面平面.
(2)因為底面,為線段的中點,
所以點到底面的距離為,
則,
又為線段的三等分點,
當時,,
所以多面體的體積為;
當時,,
所以多面體的體積為.
綜上,多面體的體積為或.
解法二:(1)平面與平面互相垂直,
理由如下:
因為底面,平面,所以平面底面,
又平面底面,,平面,
所以平面.
因為平面,所以
因為,為線段的中點,所以,
又,且平面,
所以平面,
因為平面,
所以平面平面
(2)同解法一.
科目:高中數(shù)學 來源: 題型:
【題目】一種作圖工具如圖1所示.是滑槽的中點,短桿可繞轉動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當栓子在滑槽AB內(nèi)作往復運動時,帶動繞轉動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標系.
(Ⅰ)求曲線C的方程;
(Ⅱ)設動直線與兩定直線和分別交于兩點.若直線總與曲線有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖被稱為“中華第一圖”.從孔廟大成殿梁柱,到樓觀臺、三茅宮標記物;從道袍、卦攤、中醫(yī)、氣功、武術到韓國國旗,太極圖無不躍居其上.這種廣為人知的太極圖,其形狀如陰陽兩魚互抱在一起,因而被稱為“陰陽魚太極圖”.在如圖所示的陰陽魚圖案中,陰影部分可表示為,設點,則的最大值與最小值之差是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租車公司給出的財務報表如下:
年度 項目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接單量(單) | 14463272 | 40125125 | 60331996 |
油費(元) | 214301962 | 581305364 | 653214963 |
平均每單油費(元) | 14.82 | 14.49 | |
平均每單里程(公里) | 15 | 15 | |
每公里油耗(元) | 0.7 | 0.7 | 0.7 |
有投資者在研究上述報表時,發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計算公式為.
(1)分別計算2014,2015年該公司的空駛率的值(精確到0.01%);
(2)2016年該公司加強了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到11月30日,空駛率在2015年的基礎上降低了20個百分點,問2016年前11個月的平均每單油費和平均每單里程分別為多少?(分別精確到0.01元和0.01公里).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | ||||||
頻數(shù) | ||||||
支持“生二胎” |
(1)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認為以歲為分界點對“生育二胎放開”政策的支持度有差異;
年齡不低于歲的人數(shù) | 年齡低于歲的人數(shù) | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司舉辦捐步公益活動,參與者通過捐贈每天的運動步數(shù)獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業(yè)作出了較大的貢獻,公司還獲得了相應的廣告效益.據(jù)測算,首日參與活動人數(shù)為人,以后每天人數(shù)比前一天都增加,天后捐步人數(shù)穩(wěn)定在第天的水平,假設此項活動的啟動資金為萬元,每位捐步者每天可以使公司收益元(以下人數(shù)精確到人,收益精確到元).
(1)求活動開始后第天的捐步人數(shù),及前天公司的捐步總收益;
(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點是拋物線的焦點,直線與相交于不同的兩點.
(1)求的方程;
(2)若直線經(jīng)過點,求的面積的最小值(為坐標原點);
(3)已知點,直線經(jīng)過點,為線段的中點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相對統(tǒng)一的和諧美,定義:能夠?qū)A的周長和面積同時等分成兩個部分的函數(shù)稱為圓的一個“太極函數(shù)”,則下列有關說法中:
①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);
②函數(shù)是圓的一個太極函數(shù);
③直線所對應的函數(shù)一定是圓的太極函數(shù);
④若函數(shù)是圓的太極函數(shù),則
所有正確的是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列,定義, .
(1) 若,是否存在,使得?請說明理由;
(2) 若, ,求數(shù)列的通項公式;
(3) 令,求證:“為等差數(shù)列”的充要條件是“的前4項為等差數(shù)列,且為等差數(shù)列”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com