已知全集U=R,A={1,3,5,7},B={x|2≤x≤8},C={x|a-1≤x≤2a+1}.
(1)求A∩B,∁UB;
(2)若(∁UB)∩C=∅,求a的取值范圍.
考點:交、并、補集的混合運算,交集及其運算
專題:集合
分析:(1)根據(jù)集合的基本運算即可求A∩B,∁UB;
(2)根據(jù)(∁UB)∩C=∅,建立條件關(guān)系即可求實數(shù)a的取值范圍
解答: 解:(1)A∩B={3,5,7}                       
UB={x|x>8或x<2};                     
(2)∵∁UB={x|x>8或x<2},
∴若(∁UB)∩C=∅,
則當C=∅,即a-1>2a+1.即a<2,滿足條件,
當C≠∅,則滿足
a≥2
2a+1≤8
a-1≥2
,即
a≥2
a≤
7
2
a≥3
,
解得3≤a≤
7
2
,
綜上3≤a≤
7
2
或a<2.
點評:本題主要考查集合的基本運算,以及基本關(guān)系的考查,要求熟練掌握集合的交并補運算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
tan(
x
2
+
π
6
),x≠
3
+2kπ(k∈Z)的最小正周期為( 。
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰三角形的頂角的余弦值等于-
7
25
,求這個三角形的底角的正弦、余弦和正切的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 
1
2
(3x2-ax+15)在[-2,+∞)上是減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)若∅≠A∩B,且A∩C=∅,求實數(shù)a的值;
(2)A∩B=A∩C≠∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

OA
=3
e1
,
OB
=3
e2
,且P、Q是AB的兩個三等分點,則
OP
=
 
,
OQ
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是偶函數(shù),g(x)是奇函數(shù),定義域都是{x|x≠±1},且f(x)+g(x)=
1
x-1
.求:f(x)•g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,實數(shù)x,y滿足-1<x<1,-1<y<1,記A為事件“x2+y2<1“.
(Ⅰ) 試求事件A發(fā)生的概率;
(Ⅱ)設(shè)計用計算機模擬方法計算事件A發(fā)生的概率的算法,只要求寫出偽代碼語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

敘述隨機事件的頻率與概率的關(guān)系時有如下說法:
①頻率就是概率;
②頻率是客觀存在的,與實驗次數(shù)無關(guān);
③頻率是隨機的,在試驗前不能確定;
④隨著實驗次數(shù)的增加,頻率一般會越來越接近概率.
其中正確命題的序號為
 

查看答案和解析>>

同步練習(xí)冊答案