13.集合A={x|2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,則實數(shù)m的取值范圍是(-∞,3].

分析 根據(jù)B⊆A,從而考慮討論B是否為空集,為空集時得到m+1>2m-1,不為空集時得到$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1≥2}\\{2m-1≤5}\end{array}\right.$,這樣解出m的范圍求并集便得出實數(shù)m的取值范圍.

解答 解:B⊆A;
∴①若B=∅,則m+1>2m-1;
即m<2,此時滿足B⊆A;
②若B≠∅,則$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1≥2}\\{2m-1≤5}\end{array}\right.$;
解得2≤m≤3;
綜上得,m≤3;
∴實數(shù)m的取值范圍是(-∞,3].
故答案為:(-∞,3].

點評 考查描述法表示集合的定義及表示形式,子集的概念,空集的定義,不要忘了討論B是否為空集.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆湖北省百所重點校高三聯(lián)合考試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知命題對任意,命題存在,使得,則下列命題為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知函數(shù)是定義在上的單調(diào)函數(shù),且對任意的都有,若動點滿足等式,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin($\frac{π}{4}$+x)sin($\frac{π}{4}$-x)+$\sqrt{3}$sinxcosx(x∈R).
(1)求f($\frac{π}{6}$)的值;
(2)在△ABC中,若f(A)=1,求sinB+sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.計算:(log32+log35)•lg9( 。
A.1B.2C.lg3D.2lg7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=loga(x-2)(a>0,a≠1)恒過定點A,函數(shù)g(x)=ax-2(a>0,a≠1)恒過定點B,則 A,B兩點關(guān)于( 。
A.y=x對稱B.y=x-2對稱C.y=-x對稱D.y=-x-2對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項和為Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求證:數(shù)列{Sn+2}是等比數(shù)列;并數(shù)列{an}的通項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直線y=k(x-3)+6必過定點(3,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=1,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的大小為$\frac{3π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案