8.下列4個命題中,正確的是(1)(2)(3)(4)(寫出所有正確的題號).
(1)命題“若a≤b,則ac≤bc”的否命題是“若a>b,則ac>bc”;
(2)“p∧q為真”是“p∨q為真”的充分條件;
(3)“若p則q為真”是“若¬q則¬p為真”的充要條件;
(4)$p:\left\{{x|}\right.-\frac{1}{2}≤sinx≤\frac{1}{2},x∈(-\frac{π}{2},\frac{π}{2})\left.{\;}\right\}$,$q:\left\{{x|}\right.-\frac{1}{2}≤x≤\frac{1}{2}\left.{\;}\right\}$,p是q的必要不充分條件.

分析 寫出原命題的否命題可判斷(1);根據(jù)充要條件定義,可判斷(2)(3)(4)

解答 解:(1)命題“若a≤b,則ac≤bc”的否命題是“若a>b,則ac>bc”,故(1)正確;
(2)“p∧q為真”時,pq均為真,此時“p∨q為真”;
“p∨q為真”時,pq中存在真命題,但不一定全為真,故“p∧q為真”不一定成立;
即“p∧q為真”是“p∨q為真”的充分條件,故(2)正確;
(3)“若p則q為真”與“若¬q則¬p為真”互為逆否命題;
即“若p則q為真”是“若¬q則¬p為真”的充要條件;
(4)$p:\left\{{x|}\right.-\frac{1}{2}≤sinx≤\frac{1}{2},x∈(-\frac{π}{2},\frac{π}{2})\left.{\;}\right\}$=$\{x|-\frac{π}{6}≤x≤\frac{π}{6}\}$,$q:\left\{{x|}\right.-\frac{1}{2}≤x≤\frac{1}{2}\left.{\;}\right\}$,
故p是q的必要不充分條件,故(4)正確.
故答案為:(1)(2)(3)(4)

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,充要條件,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論錯誤的是( 。
A.“若am2<bm2,則a<b”的逆命題為真命題
B.命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為真
C.命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題
D.若p∨q為假命題,則p、q均為假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)n為正整數(shù),(x-$\frac{1}{x\sqrt{x}}$)n展開式中存在常數(shù)項,則n的一個可能取值為(  )
A.8B.6C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列4個命題中,正確的是(2)(3)(寫出所有正確的題號).
(1)命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
(2)“x=-1”是“x2-5x-6=0”的充分不必要條件
(3)命題“若sinx≠siny,則x≠y”是真命題
(4)若命題$p:?{x_o}∈R,x_0^2-2{x_0}-1>0$,則¬p:?x∈R,x2-2x-1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.北宋歐陽修在《賣油翁》中寫道:“(翁)乃取一葫蘆置于地,以錢覆其扣,徐以杓酌油瀝之,自錢孔入,而錢不濕.因曰:‘我亦無他,唯手熟爾.’”可見技能都能透過反復(fù)苦練而達(dá)至熟能生巧之境的.若銅錢是半徑為2cm的圓,中間有邊長為0.5cm的正方形孔,你隨機向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率為( 。
A.$\frac{1}{16π}$B.$\frac{1}{4π}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知遞增的等差數(shù)列{an}(n∈N*)的首項a1=1,且a1,a2,a4成等比數(shù)列,則a4+a8+a12+…+a4n+4=2n2+6n+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是( 。
A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓O:x2+y2=r2(r>0)與直線3x-4y+20=0相切,則r=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,定點F(1,0),P是定直線l:x=-1上一動點,過點P作l的垂線與線段PF的垂直平分線相交于點Q,記Q點的軌跡為曲線T,過點E(2,0)作斜率分別為k1,k2的兩條直線AB,CD交曲線T于點A,B,C,D,且M,N分別是AB,CD的中點.
(1)求曲線T的方程;
(2)若k1+k2=1,求證:直線MN過定點.

查看答案和解析>>

同步練習(xí)冊答案